شناسایی الگوی کانی‌سازی در فرکانس‌های بالای داده‌های ژئوشیمیایی با استفاده از روش جدید DWT - PCA

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مجتمع آموزش عالی گناباد

2 دانشکده معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

10.29252/anm.7.14.1

چکیده

منطقه دالی واقع در قسمت مرکزی ایران به عنوان منطقه کانی‌سازی مس - طلای پورفیری معرفی شده است. در این مطالعه به منظور تعیین الگوی کانی‌سازی و بحث در خصوص مولفه‌های کانی‌سازی، یک روش جدید بر مبنای ترکیب روش تبدیل موجک گسسته و تحلیل مولفه‌های اصلی مورد استفاده قرار گرفته است. تبدیل موجک گسسته به عنوان یک روش جدید پردازش داده و یک ابزار آنالیز چند طیفی می‌تواند فرکانس‌های مختلف موجود در یک سیگنال وابسته به زمان یا مکان را تفکیک نماید. آنالیز موجک منجر به نتایج موفقیت آمیزی در زمینه‌های مهندسی مانند تحلیل سیگنال و کاربردهای عددی می‌شود. داده‌های ژئوشیمیایی سطحی مربوط به 30 عنصر با استفاده از روش تبدیل موجک گسسته دو بعدی هار به حوزه مکان - مقیاس انتقال یافته و در یک مرحله به فرکانس‌های بالا و پایین تجزیه شده است سپس روش PCA به صورت جداگانه بر روی مولفه‌های جزء در جهت‌های افقی و عمودی (فرکانس‌های بالای داده‌های ژئوشیمیایی) اعمال شده است. در نهایت عناصر مس و طلا با استفاده از ترکیب فاکتور‌های کانی‌سازی حاصل از مولفه‌های جزء تبدیل موجک در جهت‌های افقی و عمودی به صورت واضح و شفاف از سایر عناصرکلاسه‌بندی شده است. اطلاعات به دست آمده از حفاری‌های اکتشافی شامل ترانشه‌ها و گمانه‌ها در منطقه نتایج حاصل از روش DWT – PCA را تایید می‌کند. نتایج این مطالعه روش ترکیبی  DWT – PCA را به عنوان روشی جدید جهت پردازش داده‌های ژئوشیمیایی، شناسایی الگو و کلاسه‌بندی عناصر کانی‌سازی نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of mineralization pattern in high frequencies of geochemical data by using the new approach of DWT-PCA

نویسندگان [English]

  • Hossein Shahi 1
  • Reza Ghavami Riabi 2
  • Abolghasem Kamkar Rouhani 2
1 University of Gonabad
2 Dept. of Mining, Petroleum and Geophysics, Shahrood University of Technology
چکیده [English]

summary
The Dalli area has been introduced as copper–gold probably porphyry mineralized area in the central part of Iran. In this study, in order to determine the mineralization pattern, a new method based on coupling discrete wavelet transform (DWT) and principal component analysis (PCA) has been used. The surface geochemical data of 30 elements were transformed to position – scale domain using 2DWT and were decomposed to high and low frequencies in one level then PCA was performed on vertical and horizontal detail components separately. In the final, the elements of Au and Cu have been classified clearly using the combination of mineralization factors obtained of vertical and horizontal detail components. The results of this study demonstrate that the DWT – PCA combined approach is a modern method for geochemical data processing.
Introduction
In this paper, the position - scale domain of geochemical data, using 2dimensional discrete wavelet transform has been represented and analyzed on Cu–Au porphyry deposit in northern Dalli area and the results have been discussed. Wavelet analyses have led to very successful results in numerous scientific and engineering fields such as signal analysis and numerical applications.
Methodology and Approaches
WT is a tool for the analysis of signals. Wavelets are used as the basis functions for signal representation such as sines and cosines. In the DWT, detailed and approximation coefficients are obtained with the wavelet algorithm based on high-pass and low-pass filters. In this paper, a new method is proposed based on coupling Haar DWT and Principal component analysis (PCA) for mineralization elements forecasting applications. PCA is a multivariate statistical method for geo-information identification of geo-datasets.
Results and Conclusions
The wavelet coefficients of geochemical data in vertical and horizontal detail components have appropriate exploratory information. The results of this analysis on the Haar WT have desirably identified the mineralizing elements. Hence, the Haar wavelet is a suitable mother wavelet for interpretation of geochemical data. The surface information and the exploration drillings in the study area confirm the results of WT.

کلیدواژه‌ها [English]

  • Two-dimensional discrete wavelet transform (2DDWT)
  • position – scale domain
  • Principal Component Analysis (PCA)
  • geochemical data processing
[1] DarabiGolestan, F. Ghavami-Riabi, R. Kakaei, R. Asadi-Harooni, H. (2012), evaluation of primary and secondary Lithogeochemical haloes of Northern Dalli Cu–Au porphyry and integration of them with other exploration information in order to conduct exploration activities ", Journal of Applied Geology, Vol. 7, No. 4: 318-311. (In Persian)

[2] Jolliffe, I.T., (2002). Principal Component Analysis, 2nd edn. Springer, New York,547 NY.487 pp.

[3] Li, J. (1997).Wavelet analysis and signal processing—theory, application and software. Chongqing Publishing House, Chongqing, pp 1–325 (in Chinese)

[4] Zhang, L., Bai, G., & Xu, Y. (2003). A wavelet analysis based new approach for interference elimination in geochemical hydrocarbon exploration. Mathematical geology, 35(8), 939-952.

[5] Zhang, L., Bai, G., Zhao, K., & Sun, C. (2006). Restudy of acid-extractable hydrocarbon data from surface geochemical survey in the Yimeng Uplift of the Ordos Basin, China: improvement of geochemical prospecting for hydrocarbons. Marine and petroleum geology, 23(5), 529-542.

[6] Alfred, M. (1999). Signal Analysis Wavelets, Filter Banks, Time-Frequency Transforms and Applications.

[7] Bolton, E. W., Maasch, K. A., & Lilly, J. M. (1995). A wavelet analysis of Plio-Pleistocene climate indicators: A new view of periodicity evolution. Geophysical Research Letters, 22(20), 2753-2756.

[8] Zhang, L., Bai, G., & Zhao, Y. (2012). A method for eliminating cap rock thickness influence on anomaly intensities in geochemical surface survey for hydrocarbons. Mathematical Geosciences, 44(8), 929-944.

[9] Tokhmechi, B., Memarian, H., Rasouli, V., Noubari, H. A., Moshiri, B. (2009). Fracture detection from water saturation log data using a Fourier–wavelet approach. Journal of Petroleum Science and Engineering, 69(1), 129-138.

[10] Zhang, L., Bai, G., Zhao, K. (2013). Data-processing and multi-type anomaly recognition in the geochemical survey in the south slope of the Dongying Depression, East China, Goldschmidt Conference

[11] Shahi, H., Ghavami, R., Rouhani, A.K., Kahoo, A.R. and Haroni, H.A., (2015). Application of Fourier and wavelet approaches for identification of geochemical anomalies. Journal of African Earth Sciences, 106, pp.118-128.

[12] Asadi Haroni H. 2008. First Stage Drilling Report on Dalli Porphyry Cu-Au Prospect, Central Province of Iran. Technical Report.

[13] Darabi-Golestan F , Ghavami-Riabi R, Asadi-Harooni H, (2012). Alteration, zoning model, and mineralogical structure considering lithogeochemical investigation in Northern Dalli Cu–Au porphyry, Arab J Geosci DOI 10.1007/s12517-012-0689-0

 [14] Johansson, E. (2005). Wavelet Theory and some of its Applications, Department of Mathematics. Lulea, Sweden, Lulea University of Technology. Licentiate: 90.

[15] Bessissi, Z., Terbeche, M., Ghezali, B. (2009). Wavelet application to the time series analysis of DORIS station coordinates. Comptes Rendus Geoscience, 341(6), 446-461.

[16] Vetterli, M,. Kovacevic, J. (2007). Wavelets And Subband Coding, USA, New Jersey , Prentice Hall PTR, Englewood Cliffs.

[17] Stark, H. (2005). Wavelets and Signal Processing, Aschaffenburg - University of Applied Sciences, Germany.