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Keywords  Abstract 

Remnant magnetization causes a change in the direction and 
intensity of the magnetization vector. If inversion is performed 
regardless of remnance, in some cases it may have unreliable and 
misleading results. For inversion with respect to remnant 
magnetization, several solutions have been proposed so far, one of 
which is to convert the data of total magnetic field into data that is 
independent of the direction of magnetization. In this study, the 

transformation of Total Field Anomaly (TFA) into Total Magnitude Anomaly (TMA) is used. The inversion 
algorithm is based on improving compact inversion method and is just two-dimensional. In compact 
inversion, anomalies may concentrate on the surface of the earth, and thus the response is unreliable. To 
solve this problem, a combination of matrices and weighting functions have been used, including elements 
such as magnetic susceptibility and depth function. The resulting model can be smooth or compact (with 
sharp edges) based on changing compactness factor. The method has been tested using several synthetic 
and real data. The synthetic data are a 2D tabular prism, of which the top buried-depth is 20 m and the 
length and width are 40 to 20 m, a dipping prism with a vertical tabular nearby. The real example is 
magnetic data over Galinge iron-ore deposit in Qinghai province of China, and the data of four profiles have 
been considered for 2D inversion. Inversion even smooth or sharp, have been conducted with all models, 
and especially sharper models are consistent with the known geologic attributes of the magnetic sources. 
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1. INTRODUCTION 

In some magnetic observations, it can be 
assumed that there is no remnant magnetization 
or can be neglected. In these cases, the direction 
of remnant magnetization is assumed to be 
parallel with the direction of the Earth's 
magnetization, and some modeling can be done 
with this hypothesis. But there is remnant 
magnetization in most cases, which, if severe, 
causes uncertainty in inversion of magnetic data. 
Although this problem was present from the 
beginning of the magnetic measurement, it was 
not important for two reasons: first, in many 
magnetic studies, the amount of remnant 
magnetization was considered to be negligible; 
secondly, many magnetic data were interpreted 
qualitatively; It was performed only for the 
purpose of estimating depth, in which there was 
no need to know the direction of magnetization 
[1]. However, remnant magnetization is severe 

and inevitable in many applications of magnetic 
method, including mineral exploration, regional 
explorations of the earth's crust and archeology. 
Given the above mentioned reasons, inversion 
result is unreliable without attention to the 
remnant magnetization; so many researchers 
have offered numerous ways to solve this 
problem. In general, there are three methods for 
inversion of magnetic data with respect to 
remnant magnetization: 1) inversion method 
with estimation for the direction of remnant 
magnetization, 2) inversion by converting 
magnetic data into the data that is independent of 
magnetization and 3) Magnetic Vector Inversion 
(MVI). 

If the direction of remnant magnetization is 
somehow estimated or calculated, it can be easily 
inverted by replacing it into the forward 
equations. This method is the simplest and most 
precise method for inversion of magnetic data [2, 
3, 4, 5]. Li et al [6] have used this method to 
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model magnetic data in the North America. There 
are several methods for estimating the direction 
of magnetization, which can be done by Helbig's 
method [7, 8, 9, 10], wavelet multiscale edge 
method [11],  And Cross-Correlation Method [12, 
13]. 

If the magnetic data are converted to another 
kind of data so that it is independent of the 
direction of magnetization, modeling becomes 
easier and more reliable. As we know, the 
combination of vertical and horizontal 
derivatives of the magnetic field in two 
dimensions is called Analytical Signal (AS), which 
is introduced by [14]. The analytical signal value, 
which is same as vector magnitude of magnetic 
gradients, is almost independent of the 
magnetization and can be used throughout the 
profile to estimate the depth of the anomaly 
without attention to remnant magnetization. 
Shearer and Li [15] and Shearer [1] have 
developed a method based on analytical signal 
data (total gradient vector magnitude) and taking 
into account the inversion with positivity 
constraints. If it is possible to estimate the 
components of the magnetic field in three 
directions of Cartesian or to measure three 
components of the magnetic field (in some 
aeromagnetic measurements, each of the three 
components of the magnetic field is taken), it is 
possible to measure Total Magnitude Anomaly 
(TMA). The general method for obtaining three 
components of the magnetic field is the use of the 
wavenumber method [16]. Inversion of TMA data 
extensively is used by Li et al [6] and two-
dimensionally by Liu et al [17, 18] for ground 
magnetic data and magnetometric drilling logs. 

The inversion method with estimation of the 
remnant magnetization direction, despite its 
simplicity, cannot be used in many cases or is not 
reliable. Because the direction of remnant 
magnetization may not be same throughout the 
magnetic body, or due to tectonic activity (e.g. 
faulting), a part of the body is displaced or 
rotated, so there is more than one magnetization 
direction. 

According to the limitations mentioned above, 
another method called magnetic vector inversion 
is proposed by Ellis et al [19] and MacLoad and 
Ellis [20]. Both the magnitude and the magnetic 
vector are estimated as two unknown 
parameters. This approach has been proposed 
with some differences by Kubota and Uchyama 
[21] , Lelivre and Oldenburg [22] and Pratt et al 
[23]. The method dramatically reduces the risk 
and error as compared with estimation of the 
direction of remnant magnetization methods, and 

is a suitable method for inversion of local and 
regional magnetic data, but due to increasing 
model parameters triply, the non-uniqueness of 
this method will increase. 

Last and Kubik [23], in particular, developed a 
method for inversion of gravity data called 
ȬÃÏÍÐÁÃÔ ÉÎÖÅÒÓÉÏÎȭȟ ÅØÐÌÁÉÎÉÎÇ ÔÈÅ ÏÂÓÅÒÖÅÄ 
anomaly by structures of minimum volume. Their 
strategy is to minimize the area of the model, so 
this is equivalent to maximizing its compactness. 
This method strongly depends on the number of 
model parameters, and by increasing the model 
parameters, the anomalies tend to concentrate 
near the surface. Guillen and Menichetti [25] 
applied an approach which includes the search 
for solutions, minimizing the moment of inertia 
with respect either to the center of gravity or to 
an axis of a given dip line passing through it. The 
method works properly for a single gravity 
source, but the problem is dealing with multi-
source and complicated anomalies which do not 
lie in one point or one axe. Barbosa and Silva [26] 
generalized the compact inversion method to 
compact along several axes usinÇ 4ÉËÈÏÎÏÖȭÓ 
regularization. They improved the method 
offered by Guillen and Menichetti [25] for multi-
source and complicated anomalies. The most 
ÒÅÃÅÎÔ ÃÏÍÐÁÃÔ ÍÅÔÈÏÄ ÉÓ ÃÁÌÌÅÄ ȬÉÎÔÅÒÁÃÔÉÖÅ 
ÉÎÖÅÒÓÉÏÎȭ ÔÈÁÔ ×ÁÓ ÄÅÖÅÌÏÐÅÄ ÂÙ "ÁÒÂÏÓÁ ÁÎÄ 
Silva [27] for magnetic data, which estimates the 
location and geometry of several anomalies. They 
simplified their old method [26] for 
computational performing. The method is 
suitable for multi-source and even complicated 
anomalies depending on the quantity and quality 
ÏÆ ȬÁ ÐÒÉÏÒÉȭ ÉÎÆÏÒÍÁÔÉÏÎȢ 3ÉÌÖÁ ÅÔ ÁÌ ɍςψȟ ςωɎ ÁÌÓÏ 
developed interactive inversion successfully for 
3-D gravity data closest to pre-specified 
geometric elements such as axes and points. 
Ghalehnoee et al [30] have provided a more 
comprehensive and general method compare 
with the above methods for two-dimensional 
gravity inversion. They introduced three 
weighting functions such as depth function, 
compactness function, and weighting function 
based on the kernel matrix combined together to 
solve the problem. 

We modified Ghalehnoee et al [30] method for 
inversion 2-D magnetic data. We changed 
weighting functions of the gravity method to a 
depth weighting function and compactness 
weighting function for magnetic method, 
therefore, the kernel weighting function has been 
eliminated compared with the gravity inversion 
algorithm due to lower lateral dependence than 
the gravity method. The elements of compactness 
weighting matrix are the susceptibility or 
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magnetization of the model. The Total Field 
Anomaly data (TFA) also converted to Total 
Magnitude Anomaly data (TMA) to reduce 
remnant magnetization effect, so the algorithm 
runs on TMA data. 

2. METHODOLOGY 

Total magnitude anomaly (TMA) data is 
calculated from the total field magnetic anomaly 
(TFA) through a Fourier domain calculation or 
equivalent source by converting to the three 
orthogonal components of the total field anomaly, 
Bx, By, and Bz, and then calculating the magnitude 
of the quantities, B: 

ὄ ὄ ὄ ὄ  (1)  

For two-dimensional data, By will be 
eliminated. To find TMA data, the components of 
the total field anomaly, Bx, By, and Bz, are 
calculated in the wavenumber domain [16] or by 
the equivalent source technique [31].  

 
Figure 1. The 2-D model, showing data point i and 

prism j; Zi is me asurement height and Zj is prism 

depth . 

If the ground beneath data measurements is 
subdivided into two-dimensional prisms (Fig. 1), 
the total magnitude anomaly (TMA) in the ith 
data is [24]: 

ὄ ὃά Ὡ 
(2)  

Ὥ ρȟςȟȣȟὔȠ  Ὦ ρȟςȟȣȟὓ  

Where ά  is the susceptibility (SI) or 

magnetization intensity (A/m) of the jth prism, Ὡ 
is the noise associated with ith data point, and ὃ  

is kernel matrix, the elements of which represent 
the influence of the jth prism on the ith magnetic 
value. 

The data equation can be rewritten in matrix 
notation 

ὄ ὃά Ὡ (3)  

The inversion method here is linear, like other 
linear geophysical inversions: given, the observed 
magnetic data (B), finding a density distribution 
Ȭmȭ ×ÈÉÃÈ ÅØÐÌÁÉÎÓ ȬBȭȟ ×ÉÔÈ Á ÃÅÒÔÁÉÎ ÎÏÉÓÅ ÌÅÖÅÌȢ 
The solution of the system in kth iteration can be 
in the least-square problem in matrix notation 
[32]:  

ά‏ ὡ ὃ ὃὡ ὃ

‘ὡ   Ὣ‏
(4)  

ά ά ά‏  (5)  

Where ὡ  is model weighting matrix, ὡ  is a 
noise weighting matrix in kth iteration, both of 
which are diagonal, and ‏Ὣ Ὣ ὃά  . 
Mu (‘) is damping factor or regularization 
parameter to get rid of matrix singularity, having 
the positive value and depending on the noise 
level of the data measurements. The less value of 
damping factor refers to the less noise level of the 
data. The most common and simplest method for 
estimating damping factor is the use of L-curve. 
The L-curve is a log-log plot of the norm of a 

regularized solution ό ὒὲὡ ά  versus the 

norm of the corresponding residual norm 

ὺ ὒὲὨ ὃά . It is a convenient 

graphical tool for displaying the trade-off 
between the size of a regularized solution and its 
fit to the given data, as the regularization 
parameter varies. The L-curve thus gives insight 
into the regularizing properties of the underlying 
regularization method, and it is an aid in choosing 
an appropriate regularization parameter or 
damping factor for the given data [33]. After 
fitting the curve on the data, the point with the 
greatest curvature is considered as the desired 
value of the damping factor. Figure 2 
schematically shows L-curve for different values 
of damping factor; the optimum value for 
damping factor is the greatest curvature in the 
curve (red circle in Fig. 2). 

We introduce a general weighting function 
including the compactness weighting Wc and 
depth weighting Wz matrices in kth iteration:  

ὡ ὡὡ  (6)  

Noise weighting matrix ὡ , can be simply 
written as [24]:  

ὡ ὨὭὥὫὃὡ ὃ    (7)  
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Figure 2. Schematically L -curve plotted with 
ÄÉÆÆÅÒÅÎÔ ʈ ÖÁÌÕÅÓȠ ÔÈÅ ÒÅÄ ÃÉÒÃÌÅ ÉÓ ÔÈÅ ÂÅÓÔ 
damping factor value [33]. Red circle is the 
optimum value of damping factor . 

Magnetic data, like other potential field data, 
have no inherent resolution. When minimizing, 
ᴁάᴁ ά᷿ Ὠὺ, final model tends to concentrate 
near the surface regardless of the true depth of 
the causative bodies. This arises because the 
constructed model is a linear combination of 
kernels that decays sharply rapidly with depth 
[34].  

A depth weighting has been presented here to 
be appropriate for 2D magnetic data: 

ύ ᾀ ᾀ  (8)  

ὡ ὨὭὥὫύ  (9)  

Where ᾀ is the depth of the jth prism, ᾀ is the 

measurement height for each data from surface, 
and ɼ is a constant value. 

The value of ‍ is usually chosen to reproduce 
the exponential decay of the magnetic response 
of a sphere with distance [35]. Li and Oldenburg 
[3] estimated the value of ɼ = 3 and Liu et al [18] 
used σ ‍ τ. Accordingly, the value same ɼ = 
3.5 has been chosen in this study. 

The compactness functional (minimum area 
or minimum support) was first introduced by 
Last and Kubik [24], who suggest seeking the 
source distribution with the minimum area to 
model the anomaly. This concept is illustrated as: 
if d and h are the prism dimensions, a definition 
of area for 2D model is [24]:  

ὥὶὩὥὨὬ
ȿάȿ

ȿάȿ ‐
 (10) 

This leads to choose the compactness 
weighting function  

ύ ȿάȿ ‐ (11) 

Where ‌ is compactness factor and the 
parameter ‐ is a small number of 10-10 which is 
introduced to provide stability as ά ᴼπ. This 

weight is not appropriate when reference model 
exists due to geological information, therefore, 
further developed by Portniaguine and Zhdanov 
ɍυɎ ×ÈÏ ÕÓÅÄ ÔÈÅ ÔÅÒÍ ȰÍÉÎÉÍÕÍ ÓÔÒÕÃÔÕÒÅȱȢ 
They added a reference model (mo) to Eq. (11); 
therefore, the final compactness function is 
yielded 

ύ ά ά ‐ (12) 

ὡ ὨὭὥὫύ  (13) 

The reference model mo may be a general 
background model that is estimated from 
previous investigations, or it could be zero (null). 

The value of ‌ has been chosen as a constant 
value by many authors. Last and Kubic [24] and 
Vatankhah et al [36] presented ‌ ς; Guillen and 
Menichetti [25], Barbosa et al [26], Barbosa and 
Silva [27], Silva et al [28,  29] and Grandis and 
Dahrin [37] have chosen ‌ ρ. In this study the 
value of ‌ is variable and depends on the 
situations coming from the depth of causative 
bodies and prior information. When the source 
lies at large depths, the large value of ‌ can be 
opted and vice-versa. If there is a subsurface 
geological information such as drilling or known 
minimum and maximum bounds, the value of 
compactness factor can also be large to have a 
sharp model. Finally, it should be pointed out that 
the appropriate range of value is π ‌ ρ for 
2D TMA data inversion. 

2.1. Inversion Procedure  

For the beginning, if there is no priori 
information, the reference model is chosen 
ά π, then Wm (Eq. 6) and We (Eq. 7) all of 
which are calculated, based on value of 
compactness factor. Then, we will have iteration 
procedure with least-square solution as Eqs. (4 
and 5). The inversion process is shown as a 
flowchart in Figure 3. The procedure should be 
performed for many damping factors to plot L-
curve, thus yielding the model with the best value 
of damping factor. 

Besides, the approach explained here, does 
not depend strongly on the number of 
parameters (M), unlike compact inversion; it is 
advised to have fewer number of parameters by 
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increasing the prism dimensions as far as 
possible thus having the most appropriate model 
and fast computational running. 

 

Figure 3. Linear iterative inversion flowchart of 
Total Magnitude Anomaly data with the present 
algorithm; note that this procedure should perform 
for many damping factors to plot L -curve and thus 
yielding the model with the best value of damping 
factor.  

2.2. Bound and Positivity Constraints  

To produce a physically meaningful model, 
refer to prior information obtained from 
geological maps, well-loggings, and laboratory 
tests, the susceptibility of each prism must satisfy 

ά  ά ά  (14) 

Where ά  is lower and ά  is upper 
bound. If at an iteration mj exceeds one of its 
bounds, then it will be fixed at the violated bound. 
Instead of being calculated by Eqs. (6 and 7), the 
corresponding weight wj will be set at a very 
large value. The large value of wj will force the 
ÐÒÉÓÍ ÄÅÎÓÉÔÙ ÃÏÎÔÒÁÓÔ ÔÏ ÂÅ ȬÆÒÏÚÅÎȭ ÁÔ ÔÈÅ 
violated boundary, at least temporarily during 
the first few iterations. This way, the response of 
the modified parameter estimates will not fit the 
observations, which will in turn trigger the 
necessity for further parameter perturbation as a 
function of the misfit [25, 26, 37]. For positivity 
constraints, the lower bound should be equal or 
close to zero. 

3. INVERSION OF SYNTHETIC DATA 

To demonstrate the capability of the method, 
the algorithm is tested with two synthetic data. 
For this purpose, a simple model including a 
tabular prism with the top depth of 20 meters, 
width and length, respectively, of 20 and 40 
meters is considered first (Fig. 4). 

 

Figure 4. An example of a two -dimensional tabular 
prism and its TFA and TMA data with 
magnetization inclination of 0 and 90 degrees; the 
inclination of geomagnetic is 45 degrees. The TMA 
data is obtained same for all of magnetization 
directions.  

Effective susceptibility k = 0.23 SI and Earth's 
magnetic field intensity are 50000 nT with a 45o 
angle of inclination (I i). Therefore, the induction 
magnetization Mi = 4 A/m is parallel to the 
direction of the Earth's magnetization. It is 
assumed that the source has the remnant 
magnetization with the magnetization of Mr = 6 
A/m. The remnance inclinations (Ir) are 
considered 0 and 90 degrees. As shown in this 
figure, the TFA value is different at these two 
inclination angles, but the TMA value is 
completely constant, so using TMA data for 
inversion provides more reliable results than TFA 
data. If TFA data is used, it is necessary to use 
both Ir and I i angels correctly. If this is neglected, 
assuming that there is no remnance, the 
inversion may not be acceptable. Figure 5 shows 
the inversion results of TFA data regardless of the 
remnant magnetization, that is, the only 
geomagnetic inclination has been included. As 
seen, all two models differ from true anomalies in 
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both data set of TFA data for remanence inclination of 0 and 90 degree. 

 

Figure 5. The inversion results obtained from the TFA data, regardless of the direction of remanent 
magnetization when the direction of the remanent magnetization is a) 0 and b) 90 degrees; the rectangle 
shows the true magnetic source.  

The effective susceptibility (SI) can be directly 
computed by [22]: 

Ὧ
ὓ‘

Ὕ
 (15) 

Where keff is the effective susceptibility, M is 
total magnetization, To is the intensity of the 
%ÁÒÔÈȭÓ ÉÎÄÕÃÅÄ ÍÁÇÎÅÔÉÃ ÆÉÅÌÄ ÁÎÄ ʈo is 
permeability of free space (τ“ ρπὝȢάȾὃ). 

Inversion of TMA data is performed using the 
present algorithm with square prism of 5 meter 
dimensions. Fig. 6 shows the inversion results 
using a damping factor of 0.1 and compactness 
factor of 0, 0.5, and 1 after 30 iterations. 

As seen in the figure, with the highest 
compactness factor (ɻ = 1), the anomaly edges 
are sharper and the actual depth is also more 
accurately modeled, while reducing the value of 
compactness factor, the depth of the anomaly 
becomes deeper and the amount of calculated 
susceptibility is reduced. For the case where the 
sharp edges or blocky model are considered, the 
compactness factor should opt a large value, and 
also it is necessary to perform inversion using 
bound constraining. In this example, for all 
models, the positivity constraining is used; also, 
for ɻ = 1, the upper bound constraining is 
ÃÏÎÓÉÄÅÒÅÄ π Ѕ Í Ѕ πȢςσ SI. 

 

 

Figure 6. Inversion results from TMA data of fi rst 
example with the present method with 
ÃÏÍÐÁÃÔÎÅÓÓ ÆÁÃÔÏÒ ÏÆ ÁɊ ɻ Ѐ πȟ ÂɊ ɻ Ѐ πȢυ ÁÎÄ ÃɊ ɻ Ѐ 
1; the rectangle shows the true magnetic source.  

The second example is related to two 
anomalies, including a dipping prism with a dip of 
45 ° and a nearby vertical tabular. The intensity 
of the earth's magnetic field intensity is 50,000 
nT, the effective magnetic susceptibility is 
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considered 0.112 SI (4.5 A/m) and the 
geomagnetic inclination, and remnant inclination 
are 45 ° and -45 °, respectively. Fig. 7 shows the 
noise-free data and noise-added data with 
Gaussian noise level of 10%. The inversion of 
noise-free data was performed with square-cell 
of 5m dimensions using compactness factor of 0, 

0.5 and 1 by damping factor of 2, after 10 
iterations (Fig. 8). As shown in Fig. 8, by 
increasing the value of compactness factor, the 
model is more similar to its actual anomaly and 
also the modeled magnetic susceptibility is closer 
to the real value. 

 

Figure 7. The second synthetic example, two magnetic bodies including a dipping prism and a vertical tabular; 
)Î ÂÏÔÈ ÔÈÅÓÅ ÁÎÏÍÁÌÉÅÓȟ ÔÈÅ ÉÎÔÅÎÓÉÔÙ ÏÆ ÔÈÅ ÅÁÒÔÈȭÓ ÍÁÇÎÅÔÉÃ ÆÉÅÌÄ ÉÎÔÅÎÓÉÔÙ ÉÓ υπȟπππ nT, the effective 
magnetic susceptibility is 0.112 SI (4.5 A/m ), the geomagnetic inclination, and remnant inclination are 45° 
and -45°, respectively. Noisy data have 10% Gaussian noise level.  
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Figure 8. The final model obtained from inversion of TMA noise -free data with a compactness factor of: a) 0, 
b) 0.5 and c) 1; the polygons show the true anomaly locations.  

Therefore, for inversion of TMA data when 
there is geology information, the compactness 
factor is suggested to be ɻ = 1. Thus, for the next 
inversions, only compact factor of 1 is used. 

Data is also affected by 10% Gaussian noise. In 
real data measurements we often have some 
noise and therefore, modeling such data will 
encounter problems. If inversion is done 
regardless of noise, unwanted anomalies may be 
created without geological origin, or the models 
may not be in actual depth or differ with real 
geometry; in other words, uncertainty may occur. 
The reliability of the inversion with noisy data 
can be done by selecting the best value of 
damping factor or regularization parameter. If a 
small value of damping factor is taken, the effect 

of noise is strongly demonstrated, and models 
with no relation to geology may be yielded, and if 
damping factor is large, then smaller anomalies 
may not be modeled, and the bodies may be 
modeled greater than their actual depths. 
Therefore, using L-curve is the simplest way to 
select the best value of damping factor. According 
to the above-mentioned statements, the inversion 
of noisy data has been done with the same cell 
dimensions and 10 iterations using different 
damping factor separately with only the 
compactness factor of 1. 

Fig. 9a shows L-curve for different values of µ. 
As seen, the best value of damping factor is 35, 
which compared with noise free data (µ = 2) is a 
much larger. 

 

Figure 9. Inversion result of noise -added data of second example with ɻ = 1; a) L-curve plot; the red circle 
shows the best value of damping factor (e.g. 35), b) measured data with 10% noise fitted with the calculated 
data resulting from inversion and c ) The final model created with damping factor of 35; the polygons are the 
actual anomaly locations.  

The inversion for a small damping factor of 8 
and a large damping factor of 90 is also done (Fig. 
10). As shown in Fig. 10, by using a small amount 
for damping factor, the effect of noise strongly 

affects the model and creates unwanted 
anomalies with unrealistic geometry, but for a 
large value of damping factor, the bodies are 
modeled at more than their actual depths. 
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Figure 10. The inversion results of the TMA data for second synthetic example with 10% Gaussian noise 
added and compactness factor of 1 using damping factor of: a) 90 and b) 8; the polygons ar e the actual 
anomaly locations.  

4. INVERSION OF REAL DATA 

In synthetic examples, the generality and 
comprehensiveness of the method for anomalies 
with different geometric shapes and different 
depths was discussed. In this study, the data of 
the Galinge Iron Ore deposit are in focus. 

The Galinge Iron Ore deposit is located in 
Qinghai Province, northwest China (longitude: 
ωςЈ πωͻ ππᴃɀωςЈ ρωͻ ππᴃ ÅÁÓÔ ÁÎÄ ÌÁÔÉÔÕÄÅȡ σχЈ πτͻ 
ππᴃɀσχЈ πψͻ ππᴃ ÎÏÒÔÈɊȢ 4ÈÅ ÄÅÐÏÓÉÔ ÃÏÎÔÁÉÎÓ ρρχ 
to 210 meters overburden of quaternary gravel 

sediments, and therefore the mineral veins are 
relatively deep. A total of 16 exploratory 
boreholes have been drilled up to a maximum 
depth of 600 meters. Borehole drillings show that 
there are a total of 8 iron belts in the Ordovician 
rocks of the Tanjianshan group (Fig. 11). This 
deposit contains dispersed and dense gray-black 
magnetite with some pyrite and limonite. The 
surrounding rocks as Tanjianshan group, include 
the mud siliceous rocks, diopsidite intercalated 
with clastic rocks, intermediate volcanic rocks, 
and marble [18]. 

 

Figure 12. Simplified geological sections of four profiles p196, p204, p212 and p220 with boreholes drilled in 
Galinge deposit [38].  

The magnetic properties of the collected 
samples show that the susceptibility of iron ores 
are much higher than the surroundings and 
significant remnant magnetization occurs. The 
susceptibility of iron ore in drilling samples is 
between 0.5 and 6.25 in SI units, and the remnant 

magnetization is from 20 to 60 A/m. 
Susceptibility of  the surrounding rocks is less 
than 0.011 SI. The ratio of remnant to induced 
magnetization varies from 0.24 to 1.26, with the 
largest variation related to dispersed 
mineralization and the least value related to 
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massive mineralization. The direction of remnant 
magnetization is undetermined due to difficulty 
to collect the oriented samples in the boreholes 
[18]. 

Figure 12a shows the residual magnetic data 
(IGRF is removed) of Galinge deposit which 
varies from 400 to 1600 nT. As it can be seen, the 
general mineralization trend is almost east-west. 

Liu et al [18] proved that the difference between 
ÉÎÃÌÉÎÁÔÉÏÎ ÏÆ ÒÅÍÎÁÎÔ ÁÎÄ %ÁÒÔÈȭÓ ÍÁÇÎÅÔÉÚÁÔÉÏÎ 
is 50 degrees, and therefore, to reduce the 
remnance effect, TFA data is converted to TMA 
data (Fig. 12b). The magnetic anomaly of the TMA 
data is in agreement with the image of the ore 
deposit on the surface. 

 

Figure 11. a) Total Field Anomaly data (TFA) measured from Galinge deposit; the drilling poin ts and sections 
are shown; b) The TMA data of Galinge deposit; the green polygon shows the image of mineralization on the 
surface (Liu et al, 2015).  

For inversion, TMA data of four sections: 
p196, p204, p212 and p220, are being prepared 
along with drilling results. Fig. 11 shows the 
geological sections of these profiles. As it is 
shown, the Galinge iron deposit consists of 
several iron belts with a high degree dip to the 
southwest. 

Inversion is done using 25 meter square cells 
with compactness factor 1 and different damping 
factors for all four sections in 20 iterations. Fig. 
13 shows the L-curve of the sections. In this 
figure, the most appropriate value of damping 
factor corresponding to the highest curvature is 
different for each of the four sections, so for 
p196, p206, p212 and p220 the best damping 
factor values are 3, 6.75, 0.58 and 2 respectively. 
Fig. 14 shows the results of inversion. Since ɻ = 1, 
the models are fairly sharp, this value is used for 
all sections. It is worth noting that due to the 
close proximity of the iron belts, inversion cannot 
separate the belts from each other. In the 
inversion results, the maximum susceptibility is 
0.233 SI, while the average susceptibility of the 
ore is approximately 1.15 SI from the drilling 
data. The reason is that the mineralization has 
occurred in the case of alternating belts, and the 
modeled value of susceptibility is the result of the 
average mineralization and surrounding rocks, 
and so it is natural that the susceptibility of the 
final model decreases. Fig. 15 shows the TMA 
data of all four profiles with the corresponding 

response that are fitted. In this figure, it is seen 
that the amount of data noise is low and there is a 
good fit between observational data and 
calculated data. 

 

Figure 13. L-curve of the Inversion of Galinge TMA 
data of four sections; the red circle shows the best 
value of damping factor for each section.  

5. CONCLUSIONS 

According to the above statements, the 
algorithm used here is to improve the compact 
method using a depth weight matrix to obtain the 


