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Keywords  Abstract 

To assess the safety of the foundation, the ultimate bearing capacity, as 

well as the settlement of the footing, should be studied. The bearing 

capacity of a footing built near the slope has been widely investigated. 

However, the published research work which focused on the settlement of 

the footing close to the slope is very limited. In many cases, the foundations 

should be built adjacent to a slope. Since geomaterial behavior is usually 

time-dependent, and due to the limited published research work on the 

time-dependent settlement of the foundation on a slope, in this study, a 

semi-analytical method has been used to obtain the elastic and viscoelastic 

settlement of a foundation rested on a slope. The proposed method has been developed based on the theory of 

elasticity by combining a transformed Airy stress function and finite difference method. To facilitate the use of 

the proposed solution, as well as investigating the effect of slope characteristics and footing geometry on the 

settlement, a set of elastic and time-dependent settlement charts have been proposed. The results indicate that the 

slope angle, the normalized footing distance from the crest, and the slope height play a prominent role in the 

settlement behavior of footing. By increasing the normalized footing distance or decreasing the slope angle, the 

settlement of the edges of the foundation tends to be equal and the behavior like a footing rested on a horizontal 

ground surface can be observed. Also, by decreasing the height of the slope, this behavior, i.e. behave like a 

footing on half-space, will happen in the smaller normalized footing distance. 

Shallow foundation settlement 

Creep 

Time-dependent behavior 

Soil bearing capacity 

2D semi-analytical method 
Finite difference method 

Differential Settlement 

1- NTRODUCTION 

When the safety of a foundation is a matter of 

concern, two critical aspects should be considered: 

ultimate bearing capacity and the settlement of the 

foundation [1]. Indeed, the magnitude of foundation 

settlements, rotation as well as differential settlement 

should be restricted [2]. The elastic and time-dependent 

settlement of the foundation resting on a half-space has 

been investigated by many researchers [3-9]. In the 

case of settlement of the flexible foundation placed on 

an elastic horizontal ground surface, a solution that can 

give vertical settlement of inner and outer sides of the 

ring plate was developed by Fisher (1957) [3]. Egorov 

and Nichiporovich (1961) by employing Bessel’s 

function, proposed an expression to compute the 

settlement and the stress under inflexible ring footings 

[4]. An analytical solution has been proposed by 

Gazetas et al. (1985) for evaluating the vertical elastic 

settlement of the footing [5]. Choobbasti et al. (2010) 

considered elasto-plastic analysis in FEM to simulate 

the settlement of ring foundation [6]. Naseri and 

Hosseininia (2015) studied the elastic settlement of ring 

foundations by employing the FDM method [7]. 

Gunerathne et al.  (2018) proposed a semi-analytical 

elastic method to evaluate the settlement of elastic tanks 

resting on a half-space soil medium [8]. In the case of 

elastic settlement, artificial neural networks have been 

employed by Diaz et al. (2018) to study the three-

dimensional elastic settlement of the footing resting on 

soil and inclined bedrock [9].  Also, the long-term 

settlement of the footing has been studied by 

researchers. Taylor and Merchant (1940) by 

considering the soil mass as a Kelvin body examined 

the creep settlement of a footing [10]. Biot (1956) 

proposed an equation to study the viscoelastic 

deformation of a porous medium that is containing a 

viscous fluid [11]. Booker and Small (1986) 

investigated the long-term settlement of footing resting 

on a horizontal soil layer by transforming the governing 

equation [12]. Xie et al. (2008) examined the creep 

settlement of the footing subjected to time depending 

loading by considering the burger model [13]. To 

investigate the time-dependent behavior of clay, an 

elastic-viscoplastic equation was proposed by Yin et al. 

(2010) [14].  Zou et al. (2018) proposed a semi-

analytical method to study the consolidation of clay by 
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considering the clay as an elastic-viscoplastic material 

[15]. Chen and Ai (2020) studied the viscoelastic 

behavior of transversely isotropic multilayered porous 

rock foundation by using numerical methods [2].  As is 

evident from the above-mentioned literature, the 

settlement of the footing resting on a horizontal ground 

surface has been widely studied. Regardless of many 

published research work that focuses on the 

investigating of the bearing capacity of a footing near 

the slope [16-22], to the knowledge of authors, the 

settlement of the footing placed close to the slope has 

been rarely investigated. Footing sometimes should be 

built on or near the slope [16, 17, 21, 23-26], and 

estimation of the foundation settlement is necessary for 

the design of shallow foundations [27]. Therefore, the 

study of footing settlement placed adjacent to the slope, 

to increase the safety of the structures, is amply clear. 

When the settlement assessment of shallow 

foundations is a matter of concern, it is common 

practice to consider both elastic and long-term 

settlement [7]. On the other hand, geomaterials 

deformation is a time-dependent phenomenon and 

demonstrate rheological behavior [2, 28-34], and 

therefore, to increase the safety of the structure, besides 

the elastic settlement, the study of time-dependent 

behavior of footing is of great importance in 

geotechnical engineering. In the literature, viscoelastic, 

elastic-viscoplastic, or elastoplastic-viscoplastic 

models have been used by researchers to investigate the 

time-dependent settlement of the foundation [35-38]. 

When the stress state in geomaterial is low, viscoelastic 

models can examine the time-dependent behavior more 

satisfactorily [39]. In the case of higher loading, where 

the geomaterials exhibit plastic deformation, the 

assessment of the bearing capacity of the foundation 

adjacent to a slope is more prominent than the 

evaluation of the settlement of the foundation, 

especially in the absence of supporting systems such as 

the retaining wall. In this research, a new approach that 

can consider all the effective parameters that play a 

significant role in the viscoelastic settlement of the 

foundation will be proposed to obtain both elastic and 

creep settlement of a footing adjacent to a slope. In this 

regard, the slope and footing geometry, as well as the 

elastic and viscosity parameters of the slope material, 

will be taken into account. Also, to describe the time-

dependent behavior of the soil or rock mass, the 

Burgers four-element model has been considered. It 

should be noted that, although numerical modeling can 

solve complex problems under various situations, due 

to time-consuming procedures it is not a cost-effective 

option in the initial stage of the design. In this study, the 

slope’s material was considered as a homogeneous 

viscoelastic material. Also, the footing was considered 

as a shallow foundation with no embedment, and the 

interface between the foundation and the slope was 

assumed to be rough. 

2- Detail of the proposed approach 

2-1- Analytical part- Computing the stress 

and strain 

Consider the footing resting on a slope, as presented 

in figure 1. The authors, proposed a new analytical 

method to evaluate the stress state due to loads of 

foundation, within a slope with high accuracy by 

considering a transformed Airy stress function [22]. 

The proposed transformed Airy stress function, as well 

as the stress components, are presented in Equations (1) 

and (2), respectively. To elaborate details on Equations 

(1) and (2) and the way of calculating them, interested 

readers are referred to the author's recently published 

research work [22, 40] 

 

 Schematic representation of the foundation resting 

near the slope

Φ(𝑧, 𝜃) =
𝐹(𝑧)

2𝑧(𝑧 + 1)
[
𝑧𝑠𝑖𝑛(𝑧𝛼) 𝑐𝑜𝑠(𝑧 + 2) 𝜃 − (𝑧 + 2) 𝑠𝑖𝑛(𝑧 + 2) 𝛼 𝑐𝑜𝑠(𝑧𝜃)

(𝑧 + 1) 𝑠𝑖𝑛(2𝛼) + 𝑠𝑖𝑛2(𝑧 + 1)𝛼

+
(𝑧 + 2) 𝑐𝑜𝑠(𝑧 + 2) 𝛼 𝑠𝑖𝑛(𝑧𝜃) − 𝑧𝑐𝑜𝑠(𝑧𝛼) 𝑠𝑖𝑛(𝑧 + 2) 𝜃

(𝑧 + 1) 𝑠𝑖𝑛(2𝛼) − 𝑠𝑖𝑛2(𝑧 + 1)𝛼
] 

(1) 

(𝜎𝜃 − 𝜎𝑟) =
𝜆𝑥

𝑟𝜋
[∫ (𝑔1 + 𝑔2)

∞

0

[𝑆𝑖𝑛 (𝑦𝐿𝑜𝑔 (
𝜆𝑥

𝑟
))] 𝑑𝑦] −

𝑎

𝑟𝜋
[∫ (𝑔1 + 𝑔2)

∞

0

[𝑆𝑖𝑛 (𝑦𝐿𝑜𝑔 (
𝑎

𝑟
))] 𝑑𝑦] + [(𝑅𝑒𝑠𝑖𝑑𝑢)

𝑎 − 𝜆𝑥

𝑟𝜋
] 

(𝜎𝜃 + 𝜎𝑟) =
𝜆𝑥

𝑟𝜋
[∫

(𝑔5𝑦 + 𝑔3) + (𝑔6𝑦 + 𝑔4)

1 + 𝑦2

∞

0

𝐶𝑜𝑠 (𝑦𝐿𝑜𝑔 (
𝜆𝑥

𝑟
)) 𝑑𝑦 + ∫

(𝑔3𝑦 − 𝑔5 ) + (𝑔4𝑦 − 𝑔6)

1 + 𝑦2

∞

0

𝑆𝑖𝑛 (𝑦𝐿𝑜𝑔 (
𝜆𝑥

𝑟
)) 𝑑𝑦]

−
𝑎

𝑟𝜋
[∫

(𝑔5𝑦 + 𝑔3) + (𝑔6𝑦 + 𝑔4)

1 + 𝑦2

∞

0

𝐶𝑜𝑠 (𝑦𝐿𝑜𝑔 (
𝑎

𝑟
)) 𝑑𝑦]

+ ∫
(𝑔3𝑦 − 𝑔5 ) + (𝑔4𝑦 − 𝑔6)

1 + 𝑦2

∞

0

𝑆𝑖𝑛 (𝑦𝐿𝑜𝑔 (
𝑎

𝑟
)) 𝑑𝑦 − [(𝑅𝑒𝑠𝑖𝑑𝑢)

𝑎 − 𝜆𝑥

𝑟𝜋
] 

𝜏𝑟𝜃
=

𝜆𝑥

2𝑟𝜋
∫ (𝑔7 − 𝑔8)

∞

0

𝐶𝑜𝑠 (𝑦𝐿𝑜𝑔 (
𝜆𝑥

𝑟
)) 𝑑𝑦 −

𝑎

2𝑟𝜋
∫ (𝑔7 − 𝑔8)

∞

0

𝐶𝑜𝑠 (𝑦𝐿𝑜𝑔 (
𝑎

𝑟
)) 𝑑𝑦 

(2) 
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The functions 𝑔1 to 𝑔8 are defined in Appendix 

A. The role of dead load due to gravity has been 

neglected in the proposed method. However, based 

on the superposition approach, the gravity stress 

distribution in a slope suggested by Goodman and 

Brown (1963) has been added to the outcome of the 

newly proposed method, and therefore, the role of 

gravity is also considered in this study [41]. Equation 

(3) may represent the Goodman and Brown gravity 

stress𝑔8equation.

 

𝜎𝑥𝑥 =
𝜌𝑔

𝛼 − tan(𝛼)
[𝑌(𝛼 − sin(𝛼)cos(𝛼)) − 2sin(𝛼)cos2(𝛼)(𝑋sin(𝛼) − 𝑌cos(𝛼))log (

sin(𝛼 − 𝛽)

sin(𝛼)
) −

𝛽sin(𝛼)[𝑌sin(𝛼)(1 + 2cos2(𝛼)) + 𝑋cos(𝛼)(1 − 2sin2(𝛼))]

 

𝜎𝑦𝑦 = 𝜌𝑔𝑦 −
𝜌𝑔

𝛼 − tan(𝛼)
[−𝑌sin(𝛼)cos(𝛼) + 2sin3(𝛼)(𝑋sin(𝛼) − 𝑌cos(𝛼))log (

sin(𝛼 − 𝛽)

sin(𝛼)
)

+𝛽sin(𝛼)[𝑌sin(𝛼)(1 − 2cos2(𝛼)) + 𝑋cos(𝛼)(1 + 2sin2(𝛼))]

 

𝜎𝑥𝑦 =
−𝜌𝑔

𝛼 − tan(𝛼)
[𝑌sin2(𝛼) + 2cos(𝛼)sin2(𝛼)(𝑋sin(𝛼) − 𝑌cos(𝛼))log (

sin(𝛼 − 𝛽)

sin(𝛼)
)

+𝛽sin(𝛼)(1 − 2sin2(𝛼))(𝑋sin(𝛼) − 𝑌cos(𝛼)]

 

(3) 

where 𝛽 = 𝑇𝑎𝑛−1 𝑌

𝑋
. 

As it is clear there is no exact solution to solve 

the integrals in Equation (2), and therefore the Filon 

[42] integration scheme was employed to calculate 

the stress components. The Filon numerical 

integration approach is presented in Appendix B. 

Total vertical time-dependent strain due to footing 

load may be represented by Equation (4) as follows, 
 

ϵ = ϵ𝑑𝑒𝑣 + ϵV 

ϵV =
𝐼1

9K
 

ϵ𝑑𝑒𝑣 =
1

2𝐺∗(𝑡)
𝜎𝑑𝑒𝑣 

(4) 

In Equation (4) the subscript V and dev represent 

the volumetric and deviatoric strain, respectively. I1 

denotes the first invariant of the stress tensor, K is 

the Bulk modulus, and 𝐺∗(𝑡) is the time-dependent 

modulus. This modulus can be represented for 

Maxwell, Kelvin, and Burger model by Equations 

(5), (6), and (7), respectively. 
 

1

𝐺𝑀
∗ (𝑡)

=
1

𝐺𝑀
+

𝑡

𝜂𝑀
 (5) 

1

𝐺𝐾
∗ (𝑡)

=
1

𝐺𝐾
(1 − 𝑒

−
𝐺𝐾 𝑡
𝜂𝐾 ) (6) 

1

𝐺𝐵
∗(𝑡)

=
1

𝐺𝑀
∗ (𝑡)

+
1

𝐺𝐾
∗ (𝑡)

 (7) 

where η and G are the viscosity and shear 

modulus respectively. It should be noted that in this 

study, plane strain condition was considered, and 

therefore, the first invariant of stress may be 

computed as𝐼1 = (1 + 𝜈)(𝜎𝑥 + 𝜎𝑦). Since this 

paper aims to examine the creep settlement of the 

foundation, it will be assumed that the stress state 

remains constant during the time.  

2-2- Numerical part-Computing the 

settlement 

To calculate the settlement of the footing rested 

on the slope, the Finite Difference Method was used. 

The slope domain has been meshed such that at each 

grid point, the vertical displacement was calculated 

through Equation (8). 

ϵ =
∂𝑉

∂𝑦
=

𝑉(𝑦 + ℎ) − 𝑉(𝑦)

ℎ
 (8) 

where h and v are the size of the mesh and the 

vertical displacement, respectively.  

3- Validation of the accuracy of the 

proposed method 

To verify the semi-analytical solution, the results 

of the proposed method were compared with the 

outcome of COMSOL finite element commercial 

software. In this regard, two slope configurations 

have been modeled and two different material 

properties were assigned to the models. The slope 

characteristic and material properties are presented 

in Tables 1 and 2, respectively. Also, the poison ratio 

of 0.3 was implemented into the model. 

Table 1-. The configuration of the modeled slope 

Case Slope angle H/x λ 

1 45 10 0 

2 30 5 1 

Table 2-. Visco-elastic parameters of studied cases 

Case GM(Pa) Gk(Pa) ηM(Pa.s) ηk(Pa.s) Ref. 

1 7.6e6 1.8e5 1.08e16 1.08e15 
[43, 

44] 

2 1.2e7 7.5e8 1.0e15 9.7e21 
[44, 

45] 

 
The settlement of the two edges and center of the 

footing was monitored during the time. The 

comparison between the proposed method and 

COMSOL FEM software is presented in Figure 2. A 

good agreement is evident between the outcome of 

numerical simulation and the suggested method. 
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(a) 

 
(b) 

 The edges and center settlement of the footing are 

placed at (a) 45-degree slope with H/x=10 and λ=0 and 

(b) 30-degree slope with H/x=5 and λ=1. 

4- Analysis of the creep settlement of the 

foundation near the slope based on slope 

characteristics 

To study the creep settlement of the foundation 

built near the slope in more detail an attempt will be 

made to propose a set of charts. Equation (4) will be 

divided into three parts, elastic, Maxwell, and Kelvin 

strain. This will help to take the slope geometry, 

material properties, and foundation loading into 

proposed charts. In this section, the details of the 

separation of Equation (4) and the definition of 

differential settlement of the foundation will be 

introduced. Then, the introduced methodology will 

be used in the next section in the form of some charts 

and the results will be discussed in detail. 

4-1- Elastic vertical strain 

The first part refers to elastic strain which is 

illustrated in Equation (9) as follows, 
 

ϵ𝑒 =
1

2𝐺
(𝜎𝑦 −

𝐼1

3
) +

𝐼1

9𝑘

=
−𝜈(1 + 𝜈)

𝐸
𝜎𝑥

+
1 − 𝜈2

𝐸
𝜎𝑦 

(9) 

Equation (9) can be subdivided into Equations 

(10) and (11) to normalize the strain based on the 

material properties (i.e. ν and E). 
 

ϵ𝑒
1 =

−𝜈(1 + 𝜈)

𝐸
𝜎𝑥 (10) 

ϵ𝑒
2 =

1 − 𝜈2

𝐸
𝜎 𝑦 (11) 

4-2- Maxwell viscous strain 

Maxwell strain can be represented by Equation 

(12) where the last part denotes the elastic strain. 

ϵ𝑀 =
1

2𝐺𝑀

𝑡

𝜏𝑀
(𝜎𝑦 −

𝐼1

3
)

+ (
1

2𝐺𝑀
(𝜎𝑦 −

𝐼

3
) +

𝐼1

9𝐾
) 

(12) 

Where 𝜏𝑀 =
𝜂𝑀

𝐺𝑀
. The elastic strain was 

calculated in the elastic vertical strain subsection, 

and therefore, the elastic part of the Maxwell strain 

will be neglected here. 

To normalize the Maxwell viscose strain based 

on the material properties, the Maxwell Equation can 

be divided into the two parts as follows, 
 

ϵ𝑀 = ϵ𝑀
1(𝑡, 𝐺𝑀, 𝜏𝑀 , 𝜎𝑦)

+ ϵ𝑀
2(𝑡, 𝐺𝑀 , 𝜏𝑀, 𝜈, 𝜎𝑦 , 𝜎𝑥) 

(13) 

Where 

ϵ𝑀
1 =

1

2𝐺𝑀

𝑡

𝜏𝑀
𝜎𝑦 

ϵ𝑀
2 =

−(1 + 𝜈)

6 𝐺𝑀

𝑡

𝜏𝑀
(𝜎𝑥 + 𝜎𝑦) 

 

4-3- Kelvin strain 

Kelvin strain is represented in Equation (14). 

Following the same strategy as the previous section, 

the kelvin strain is also divided into two parts as 

follows, 
 

ϵ𝐾 = ϵ𝐾
1(𝑡, 𝐺𝐾, 𝜏𝐾, 𝜎𝑦) + ϵ𝐾

2(𝑡, 𝐺𝐾 , 𝜏𝐾, 𝜈, 𝜎𝑦, 𝜎𝑥)

=
1

2𝐺𝐾

(1 − 𝑒
−

 𝑡
𝜏𝐾) (𝜎𝑦 −

𝐼1

3
) 

(14) 

Where 

ϵ𝐾
1 =

1

2𝐺𝐾
(1 − 𝑒

−
 𝑡

𝜏𝐾) 𝜎𝑦 

 

ϵ𝐾
2 =

−(1 + 𝜈)

6𝐺𝐾
(1 − 𝑒

−
 𝑡

𝜏𝐾) (𝜎𝑥 + 𝜎𝑦) 

 

4-4- Settlement evaluation 

The settlement of a foundation can be 

categorized into three modes: uniform settlement, 

planar tilt, and differential settlement. The angular 

distortion, as a type of differential settlement, can 

consider the effect of footing width [8], and therefore 

was used in this paper. To evaluate the differential 

settlement (angular distortion) Equations (15) to (17) 

were used. It should be noted that the vertical 
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displacement of the center, left and right sides of the 

foundation (i.e. VC, VL, and VR) is calculated based 

on Equation (8). Equations (15) and (16) evaluate the 

normalized differential settlement of the left and 

right sides of the footing respectively concerning the 

center of the footing. A normalized differential 

settlement between the left and right sides of the 

footing can be calculated through Equation (17). 

Δ𝐶𝐿 =
𝑉𝐶 − 𝑉𝐿

𝑥/2
 (15) 

Δ𝐶𝑅 =
𝑉𝐶 − 𝑉𝑅

𝑥/2
 (16) 

Δ𝐿𝑅 =
𝑉𝐿 − 𝑉𝑅

𝑥
 (17) 

In Equations (15) to (17) Subscript L, R and C 

denote the Left, right, and center of the footing 

respectively as shown in Figure 1. 

5- Details of the analysis 

The elastic and time-dependent normalized 

differential settlement (angular distortion) of the 

footing adjacent to the slope has been calculated 

based on section 4 and will be presented here as 

some charts. In this research, the slope angles of 10, 

20, 30, 45, 60, 70, 80, and 90 were considered. Also, 

to investigate the effect of slope height on the 

settlement of the foundations, two normalized slope 

heights, H/x=10 and 4 were studied. Moreover, the 

normalized distance from the crest of the slope was 

considered from λ=0 to 2. Based on the selected 

model, i.e. elastic, Kelvin, Maxwell, or Burgers, 

researchers can use these charts as following 

instructions: 

For the assessment of elastic settlement, the 

charts in the elastic settlement should be used. In the 

case where the Maxwell model was chosen, the sum 

of elastic settlement and viscose part of the Maxwell 

model should be considered. Also, when the Kelvin 

model was selected, the charts in the Kelvin 

settlement section can be taken into account. Finally, 

if the Burgers model was chosen, the sum of all three 

sections should be considered. It should be noted 

that, for each body (i.e. elastic, Maxwell, or Kelvin), 

the sum of 
1Δ  and  

2Δ  (i.e. the sum of two vertical 

axes) must be considered. Both vertical axes are 

normalized based on the elastic and viscous 

properties of the masses, and the foundation loading. 

Therefore, the charts will represent the effect of 

slope and footing geometry on the settlement. 

Another advantage  of normalizing is that charts can 

be used based on the desired material properties and 

loading. In this regard, 𝛥∗
𝑖 was defined (presented in 

Table 3) and will be used to normalize the 

differential settlement (angular distortion) of the 

foundation. 

A flowchart describing the solution steps of 

the problem is illustrated in Fig. 3. 

Table 3-. Definition of 𝜟∗
𝒊 based on material properties and 

foundation loading 

(Δ∗
𝑒)1 (Δ∗

𝑒)2 (Δ∗
𝑀)1 (Δ∗

𝑀)2 (Δ∗
𝐾)1 (Δ∗

𝐾)2 

𝜈(1 + 𝜈)𝑃

0.3125 𝐸
 
(1 − 𝜈2)𝑃

0.9375 𝐸
 

𝑃

2.5 𝐺𝑀
 

(1 + 𝜈)𝑃

3.125 𝐺𝑀
 

𝑃

 𝐺𝐾
 

(1 + 𝜈)𝑃

1.25 𝐺𝐾
 

 

 solution steps of the problem 

5-1- Elastic Settlement 

Fig. 4 represents the normalized elastic 

differential settlement of the foundation adjacent to 

the slope with H/x=10. From this figure, it can be 

concluded that by increasing the slope angle and 

decreasing the normalized distance from the crest of 

the slope, ΔCL is also decreased and for 80 and 90-

degree slope angle, ΔCL will be negative when λ  is 

smaller than 0.5. This indicates that the settlement of 

the left side is greater than the center of the footing 

and maximum settlement occurs on the left side of 

the foundation. Also, the settlement on the left side 

is greater than the right side, and therefore, as 

illustrated in Fig. 4-c foundation tends to topple to 

the left side (the occurrence of the toppling failure 

depends on the height of the structure to the width of 

the foundation). Also, by increasing the λ value, the 

settlement curve for all slope angle tend to approach 

the same value. This indicates the fact that by 

increasing the λ value, the effect of slope angle will 

vanish and the same behavior of foundation on the 

half-space will occur. As can be seen from Figure 4-

c the curves represent the differential settlement 

between the left and right sides of the footing is 

approaching zero for all slope angles. By decreasing 

the slope angle and slope height this behavior (i.e. 

the behavior of a footing resting on the horizontal 

ground surface) will occur at a lower λ. Figures 5, 6, 

and 7 represent the elastic settlement of the 

foundation for H/x=7, 4, and 1 respectively. By 

considering the curves that demonstrate 80 and 90-

degree slopes in Figure 4-c, it can be concluded 

beyond the λ greater than two, the differential 

settlement is not equal to zero. However, as can be 

seen in figure 5-c, the curve represents an 80-degree 

slope that is almost equal to zero at λ=2. By 

decreasing the normalized slope height to 4 (i.e 

h/x=4) in Figure 6-c, all curves tend to reach zero 
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value beyond the λ greater than 1.5. Also, when 

h/x=1 (see Figure 7-c) all curves almost reach zero 

value at λ=1. Table 4 represents the differential 

settlement between the left and right sides of the 

footing for the 60-degree slope at λ=1.5. As can be 

seen by decreasing the slope normalized height, the 

value of differential settlement tends to reach zero. 
 

 
(a) 

 
(b) 

 
(c) 

 Variation of differential elastic settlement of a 

footing with normalized distance from the crest for 

H/x=10 (a) left to center differential settlement 
(b) right to center differential settlement 

(c) left to right differential settlement 

 

 
(a) 

 
(b) 

 
(c) 

 Variation of differential elastic settlement of a 

footing with normalized distance from the crest for 

H/x=7 (a) left to center differential settlement 
(b) right to center differential settlement 

(c) left to right differential settlement 

Table 4-. Decreasing the differential settlement between the 

left and right sides of the footing to zero by decreasing 

the slope height for a 60-degree slope and at λ=1.5 

Normalized slope 

height (H/x) 
(𝛥𝐿𝑅)

1

(𝛥∗
𝑒)

1

 
(𝛥𝐿𝑅)

2

(𝛥∗
𝑒)

2

 

10 6.12e-3 4.81e-3 

7 3.55e-3 2.6e-3 

4 6.95e-4 5.55e-4 

1 5e-6 2.2e-4 
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(a) 

 
(b) 

 
(c) 

 Variation of differential elastic settlement of a 

footing with normalized distance from the crest for 

H/x=4 (a) left to center differential settlement (b) right 

to center differential settlement (c) left to right 

differential settlement 

 

 
(a) 

 
(b) 

 
(c) 

 Variation of differential elastic settlement of a 

footing with normalized distance from the crest for 

H/x=1 (a) left to center differential settlement (b) right 

to center differential settlement (c) left to right 

differential settlement

5-2- Viscose part of Maxwell settlement 

In this section Maxwell model was considered to 

evaluate the creep settlement. It should be noted that, 

as discussed in section 3, the elastic part of the 

Maxwell model is obtained in section 5.1 and here 

just the viscose part will be discussed. Figs. 8 to 10 

represent the ΔCL, ΔCR, and ΔLR for the H/x=10 and 

different λ. As can be seen in Fig. 8, ΔCL for 80 and 

90 degrees slope is negative. This indicates that, for 

these angles, the settlement of the left edge of the 

foundation is greater than the center of footing. Figs. 

9 and 10 indicate that by increasing the distance of 

the footing from the crest, ΔCL becomes positive and 

the effect of slope angle on the settlement is also 

decreased. By increasing the λ, the effect of slope 

geometry will diminish and as discussed previously, 

the behavior like a footing on half-space can be 

observed. Fig. 10-c manifested that, for slope angles 

of 10, 20, 30, 45, 60, and 70 degrees, the settlement 

on both sides of the foundation is equal. Also, by 

decreasing the slope height, as presented in Figures 

C-1 to C-3 in Appendix C, this behavior will occur 

at a lower λ.
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(a) 

 
(b) 

 
(c) 

 Variation of differential viscose part of Maxwell 

model settlement of a footing with time for λ=0 H/x=10 

(a) left to center differential settlement (b) right to 

center differential settlement (c) left to right differential 

settlement 
 

 
(a) 

 
(b) 

 
(c) 

 Variation of differential viscose part of Maxwell 

model settlement of a footing with time for λ=1 H/x=10 

(a) left to center differential settlement (b) right to 

center differential settlement (c) left to right differential 

settlement

 
(a) 

 
(b) 

 
(c) 

 Variation of differential viscose part of Maxwell model settlement of a footing with time for λ=2 H/x=10 (a) left to center 

differential settlement (b) right to center differential settlement (c) left to right differential settlement
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5-3- Kelvin settlement 

The same trend of the Maxwell viscose part can 

be observed here. Fig. 11 illustrated that for 80 and 

90 degrees the ΔCL is negative and the foundation 

tends to forward topple. Also, by increasing the λ 

value, or decreasing the slope height, the effect of 

slope geometry will diminish. Fig. 12 shows the 

variation of differential Kelvin model settlement of 

a footing with time for λ=1 and H/x=10.  Fig. 13-c 

demonstrates that, for slope angles of 10, 20, 30, 45, 

60, and 70 degrees, the settlement on both sides of 

the foundation are approximately equal.  

 
(a) 

 
(b) 

 
(c) 

 Variation of differential Kelvin model settlement of 

a footing with time for λ=0, H/x=10 (a) left to center 

differential settlement (b) right to center differential 

settlement (c) left to right differential settlement 

 
 

The charts for the normalized slope height of 4 

are presented in Figs. C-4 to C-6 in Appendix C. As 

can be seen in these figures, regardless of the slope 

angle all the curves tend to converge into one for the 

settlement of normalized slope height of 4 when λ=2. 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 Variation of differential Kelvin model settlement of 

a footing with time for λ=1 H/x=10 (a) left to center 

differential settlement (b) right to center differential 

settlement (c) left to right differential settlement 
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(a) 

 
(b) 

 
(c) 

 Variation of differential Kelvin model settlement of 

a footing with time for λ=2 H/x=10 (a) left to center 

differential settlement (b) right to center differential 

settlement (c) left to right differential settlement. 

6- Conclusion 

One of the important aspects in the design stage 

of shallow foundation that should be taken into 

account is the differential settlement of the footing. 

Geomaterial demonstrates rheological behavior and 

its deformation is time-dependent [2, 28-34]. 

Because of the prominent role of footing settlement 

on the safety of the structures and the limited 

published study on the assessment of settlement, an 

attempt has been made to examine the time-

dependent settlement of the footing adjacent to the 

slope. In this study, a 2D semi-analytical solution 

has been suggested. First, by using a developed Airy 

stress function, the stress component in the slope due 

to foundation load has been obtained. Then by 

considering Hook’s law and four-element Burgers 

model the elastic and visco-elastic strain has been 

calculated. By combining the analytical method with 

the finite difference method, the differential 

settlement of the foundation based on the different 

bodies (i.e. elastic, Maxwell, and Kelvin) has been 

assessed. To evaluate the accuracy of the proposed 

method in evaluating the settlement of the 

foundation, the results of the proposed method have 

been compared with COMSOL FEM commercial 

software. The comparison between the result of 

COMSOL FEM and the proposed method 

demonstrates a good agreement. To facilitate the use 

of the proposed method, some charts that can 

incorporate the elastic and viscose properties of the 

slope’s material, along with the slope and footing 

geometry, into the engineering design are proposed. 

The results indicate that the slope angle, the 

normalized footing distance from the crest, and the 

slope height play a prominent role in the settlement 

behavior of footing. By increasing the normalized 

footing distance or decreasing the slope angle, the 

settlement of the edges of the foundation tends to be 

equal, and beyond the λ greater than 2, the effect of 

slope geometry will diminish such that the behavior 

of footing rest on the horizontal ground surface will 

occur. Also, by decreasing the height of the slope, 

this behavior, i.e. behave like a footing on half-

space, will happen in the smaller normalized footing 

distance. To sum up, for a foundation with λ greater 

than two and resting on a slope with an angle smaller 

than 80-degree, the slope geometry does not play a 

significant role in the settlement of the foundation.  
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Appendix A-The functions 𝒈𝟏 to 𝒈𝟖 in 

Equation (2) 

𝑔1 =
− 𝒔𝒊𝒏(𝛼−𝜃) 𝒄𝒐𝒔𝒉(𝛼+𝜃)𝑦+𝒔𝒊𝒏(𝛼+𝜃) 𝒄𝒐𝒔𝒉(𝛼−𝜃)𝑦

(𝑦 𝒔𝒊𝒏 2𝛼−𝒔𝒊𝒏𝒉(2𝛼𝑦))
   

𝑔2 =
𝒔𝒊𝒏(𝛼+𝜃) 𝒄𝒐𝒔𝒉(𝛼−𝜃)𝑦+𝒔𝒊𝒏(𝛼−𝜃) 𝒄𝒐𝒔𝒉(𝛼+𝜃)𝑦

(𝑦 𝒔𝒊𝒏 2𝛼+𝒔𝒊𝒏𝒉(2𝛼𝑦))
      

𝑔3 =
− 𝒄𝒐𝒔(𝛼−𝜃) 𝒔𝒊𝒏𝒉(𝛼+𝜃)𝑦+𝒄𝒐𝒔(𝛼+𝜃) 𝒔𝒊𝒏𝒉(𝛼−𝜃)𝑦

(𝑦 𝒔𝒊𝒏 2𝛼−𝒔𝒊𝒏𝒉(2𝛼𝑦))
    

𝑔4 =
𝒄𝒐𝒔(𝛼 + 𝜃) 𝒔𝒊𝒏𝒉(𝛼 − 𝜃) 𝑦 + 𝒄𝒐𝒔(𝛼 − 𝜃) 𝒔𝒊𝒏𝒉(𝛼 + 𝜃) 𝑦

(𝑦 𝒔𝒊𝒏 2 𝛼 + 𝒔𝒊𝒏𝒉(2𝛼𝑦))
 

𝑔5 =
− 𝒔𝒊𝒏(𝛼 − 𝜃) 𝒄𝒐𝒔𝒉(𝛼 + 𝜃) 𝑦 + 𝒔𝒊𝒏(𝛼 + 𝜃) 𝒄𝒐𝒔𝒉(𝛼 − 𝜃) 𝑦

(𝑦 𝒔𝒊𝒏 2 𝛼 − 𝒔𝒊𝒏𝒉(2𝛼𝑦))
 

𝑔6 =
𝒔𝒊𝒏(𝛼 + 𝜃) 𝒄𝒐𝒔𝒉(𝛼 − 𝜃) 𝑦 + 𝒔𝒊𝒏(𝛼 − 𝜃) 𝒄𝒐𝒔𝒉(𝛼 + 𝜃) 𝑦

(𝑦 𝒔𝒊𝒏 2 𝛼 + 𝒔𝒊𝒏𝒉(2𝛼𝑦))
 

𝑔7 =
𝒔𝒊𝒏(𝛼 − 𝜃) 𝒔𝒊𝒏𝒉(𝛼 + 𝜃) 𝑦 + 𝒔𝒊𝒏(𝛼 + 𝜃) 𝒔𝒊𝒏𝒉(𝛼 − 𝜃) 𝑦

𝑦 𝒔𝒊𝒏(2𝛼) − 𝒔𝒊𝒏𝒉(2𝛼𝑦)
 

𝑔8 =
𝒔𝒊𝒏(𝛼 − 𝜃) 𝒔𝒊𝒏𝒉(𝛼 + 𝜃) 𝑦 − 𝒔𝒊𝒏(𝛼 + 𝜃) 𝒔𝒊𝒏𝒉(𝛼 − 𝜃) 𝑦

𝑦 𝒔𝒊𝒏(2𝛼) + 𝒔𝒊𝒏𝒉(2𝛼𝑦)
 

𝑅𝑒𝑠𝑖𝑑𝑢𝑒 = [
𝜋 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝛼 − 2𝛼
+

𝜋 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝛼 + 2𝛼
] 

Appendix B-Filon numerical integration 

method 

∫ 𝑓(𝑥)𝐶𝑜𝑠(𝑡𝑥)𝑑𝑥
𝑥2𝑛

𝑥0

= 𝑙[Ω(𝑡𝑙)[𝑓2𝑛 𝑆𝑖𝑛(𝑡𝑥2𝑛)
− 𝑓0 𝑆𝑖𝑛(𝑡𝑥0)] + 𝜒(𝑡𝑙)𝑐2𝑛

+ 𝜔(𝑡𝑙)𝑐2𝑛−1] 

∫ 𝑓(𝑥)𝑆𝑖𝑛(𝑡𝑥)𝑑𝑥
𝑥2𝑛

𝑥0

= 𝑙[Ω(𝑡ℎ)[−𝑓2𝑛 𝐶𝑜𝑠(𝑡𝑥2𝑛)
+ 𝑓𝑥0 𝐶𝑜𝑠(𝑡𝑥0)] + 𝜒(𝑡𝑙)𝑆2𝑛

+ 𝜔(𝑡𝑙)𝑆2𝑛−1] 

where, 

𝑐2𝑛 = [2 ∑ 𝑓2𝑖  𝐶𝑜𝑠(𝑡𝑥2𝑖) − [𝑓2𝑛 𝐶𝑜𝑠(𝑡 𝑥2𝑛) + 𝑓0 𝐶𝑜𝑠(𝑡𝑥0)

𝑛

𝑖=0

] 

𝑐2𝑛−1 = ∑ 𝑓2𝑖−1 𝐶𝑜𝑠(𝑡𝑥2𝑖−1)

𝑛

𝑖=1

 

𝑆2𝑛 = [2 ∑ 𝑓2𝑖  𝑆𝑖𝑛(𝑡𝑥2𝑖)]−[𝑓2𝑛 𝑆𝑖𝑛(𝑡 𝑥2𝑛) + 𝑓0 𝑆𝑖𝑛(𝑡𝑥0)

𝑛

𝑖=0

] 

𝑆2𝑛−1 = ∑ 𝑓2𝑖−1 𝑆𝑖𝑛(𝑡𝑥2𝑖−1)

𝑛

𝑖=1

 

Ω(𝑡𝑙) =
1

𝑡𝑙
+

𝑆𝑖𝑛(2𝑡𝑙)

2(𝑡𝑙)2 −
2𝑆𝑖𝑛2(𝑡𝑙)

(𝑡𝑙)3  

𝜒(𝑡𝑙) = 2 [
1 + 𝐶𝑜𝑠2(𝑡𝑙)

(𝑡𝑙)2 −
𝑆𝑖𝑛(2𝑡𝑙)

(𝑡𝑙)3 ] 

𝜔(𝑡𝑙) = 4 [
𝑆𝑖𝑛(𝑡𝑙)

(𝑡𝑙)3 −
𝐶𝑜𝑠(𝑡𝑙)

(𝑡𝑙)2 ] 

 

Appendix C 

 
(a) 

 
(b) 

 
(c) 

 C-1 Variation of differential viscose part of Maxwell 

model settlement of a footing with time for λ=0, H/x=4 

(a) left to center differential settlement 

(b) right to center differential settlement 

(c) left to right differential settlement 
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(a) 

 
(b) 

 
(c) 

 C-2 Variation of differential viscose part of Maxwell 

model settlement of a footing with time for λ=1, H/x=4 

(a) left to center differential settlement 

(b) right to center differential settlement 

(c) left to right differential settlement 
 

 
(a) 

 
(b) 

 
(c) 

 C-3 Variation of differential viscose part of Maxwell 

model settlement of a footing with time for λ=2, H/x=4 

(a) left to center differential settlement 

(b) right to center differential settlement 

(c) left to right differential settlement 

 

 
(a) 

 
(b) 

 
(c) 

 C-4 Variation of differential Kelvin model settlement of a footing with time for λ=0 H/x=4 (a) left to center differential 

settlement (b) right to center differential settlement (c) left to right differential settlement 
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(a) 

 
(b) 

 
(c) 

 C-5 Variation of differential Kelvin model 

settlement of a footing with time for λ=1 H/x=4 

(a) left to center differential settlement 

(b) right to center differential settlement 

(c) left to right differential settlement 

 

 
(a) 

 
(b) 

 
(c) 

 C-6 Variation of differential Kelvin model 

settlement of a footing with time for λ=2 H/x=4 

(a) left to center differential settlement 

(b) right to center differential settlement 

(c) left to right differential settlement 

 


