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Keywords  Abstract 

One of the most challenging safety problems in open-pit mines is 

backbreak during blasting operation. Prediction of backbreak is very 

important for a technically and economically successful mining operation. 

To avoid backbreak, different parameters such as physicomechanical 

properties of rock mass, explosives properties, and geometrical features of 

the blasting pattern should be considered. This paper presents a new 

solution of multiple linear regression (MLR), particle swarm optimization 

algorithm (PSO), and artificial neural networks (ANNs) to estimate the 

backbreak induced by bench blasting, based on major controllable blasting 

parameters. Angouran mine in Iran was considered and blasting pattern 

parameters for 73 operations were collected for this study. In addition, back-break was measured in each 

operation. Considering the previous investigations and also collected data from the mine, burden, spacing, hole 

length, stemming, charge per delay, RQD, number of rows, and powder factor were selected as input parameters. 

In order to find better solutions, the constructed models were implemented in PSO algorithms. Also, the prediction 

of backbreak was investigated using ANNs. According to the obtained results, the PSO algorithm is a suitable 

tool for optimizing models and obtaining a more accurate prediction of backbreak. Among the presented empirical 

models, the optimized exponential model with PSO algorithm with an RMSE (0.31) and R2 (0.87) shows better 

results in the prediction of backbreak and it is suitable for practical use in Angouran mine.  Considering the 

sensitivity analysis, among the input parameters, length of stemming and charge per delay have shown the most 

and the least effect on the backbreak, respectively. The results of ANNs showed that multilayer networks are 

more powerful and efficient than single-layer in the prediction of backbreak. 

Backbreak 

Multiple regression analysis 

Artificial neural networks 

Particle swarm optimization 

algorithm 
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1- NTRODUCTION 

Backbreak due to blasting operation has a 

significant impact on slope stability. This undesirable 

phenomenon can be defined as the limit of damaged 

rocks beyond the last row of production holes (Jimeno 

et al. 1995). Bauer (1982) noted that, if backbreak is 

not controlled, a decrease in the overall pit-slope angle 

would definitely be necessary which in turn causes an 

increase in the stripping ratio. Greater amounts of 

loose face rock would be produced and planned safety 

berms would be less effective. Because of the 

destructive consequences of backbreak, there would 

be a considerable increase in the total production costs 

(Scoble et al. 1997). In order to identify parameters 

that may influence the intensity of backbreak, many 

studies have been performed by various researchers 

(Jenkins, 1981; Konya and Walter 1991; Monjezi and 

Dehghani 2008). 

According to Konya (2003) excessive burden and 

stemming can be considered as the main cause of 

backbreak. Whereas, Gate et al. (2005) believe that 

the delay timing and the number of rows in a blast 

round are the most important parameters in generating 

backbreak. Backbreak has a key role in the stability of 

mine walls (Jimeno et al. 1995). According to Bauer 

(1982), flattening of pit slopes results in the increase 

of the stripping ratio would be unavoidable if the 

phenomenon is persevered. Backbreak can also 

inversely be influential to the drilling and blasting 

performance of the affected blocks. Keeping in mind 

the adverse consequences of the event and the 

decrease of mine production costs due to that it is 

necessary to apply remedial measures to diminish 

backbreak (Tawadrous 2006). 

To avoid backbreak, different parameters such as 

physicomechanical properties of rock mass, 

explosives properties, and geometrical features of the 

blasting pattern should be considered. In the past, 

empirical models were developed for the blast design 

aiming to arrive at requirements such as proper 

fragmentation, decreasing backbreak, suitable muck 
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pile profile, reducing boulders, etc. However, in such 

models, there is no straightforward way of predicting 

backbreak. Also, in the empirical models, only some 

of the effective parameters of blasting operation are 

accounted for. 

Previously developed empirical models regarding 

backbreak show poor performance. It is due to the 

complicated nature of such problems because of the 

presence of various involved parameters with no clear 

interrelation. In such a condition, the application of 

new techniques of pattern recognition like artificial 

neural networks (ANNs) and genetic algorithms 

(GAs) are recommended (Khandelwal and Singh 

2006; Kahraman et al. 2006; Monjezi et al. 2010). 

So, with considering the above shortcomings of 

available empirical methods, a new solution of 

multiple linear regression (MLR), particle swarm 

optimization algorithm (PSO), and artificial neural 

networks (ANNs) may suitably cover all the 

requirements of predicting backbreak. In some 

research, Ghasemi et al. (2016) proposed linear PSO 

and quadratic PSO forms for approximating 

backbreak resulting from bench blasting. He found 

that the quadratic form of PSO can perform better 

compared to the linear one. 

In this study, for optimizing pattern parameters of 

the blasting operation of Angouran Lead and Zinc 

open-pit mine in Iran, aiming to minimize backbreak, 

a new combined MLR-ANN–PSO model was 

developed, which was not considered in the past such 

a combined model. The study aims to predict the 

backbreak induced by blasting using Regression-PSO 

and ANN methods for better assessment. 

2- Case study and data collection 

In this study, a site investigation was conducted 

at the Angouran mine. Angouran lead and zinc open-

pit mine with a production capacity of 800 thousand 

tons per year and the remaining amount potential 

over 12 million tons with the average grade 3%-6% 

of lead and the average grade 25%-30% of zinc is 

one of the largest metal mines in Iran and also is one 

of the most economical leads and zinc mines in the 

world. Angouran mine is located in Zanjan province, 

125 km SW of Zanjan, and in a region with an 

average altitude of 3000 m. The geographical 

coordinates of the Angouran mine are 40°36′  

longitude and 20°47′ latitude. The geographical 

location of the Angouran mine has been shown in 

Fig. 1.

 

 a) Geographical location of Angouran mine, b) A view of the Angouran mine

Blasting operations at the Angouran mine utilize 

blast holes of 102-177 mm, explosive material of 

ammonium nitrate/fuel oil (ANFO; specific gravity 

of 0.85–0.95 gr/cm3), vertical blast holes, and a delay 

timing of 5 ms. In this mine, the blast holes are 

stemmed with drill cutting. One of the most 

important problems of blasting operations in the 

Angouran mine is backbreak causing damage to the 

pit walls (see Fig. 2). It is well known that backbreak 

(damage) is influenced by several rock parameters as 
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well as blast design. Therefore, after going through 

these parameters, the most influential parameters in 

backbreak, including burden, spacing, stemming 

length, hole length, powder factor, a charge per 

delay, rock quality designation (RQD), and a number 

of rows were measured in the Angouran mine. Table 

1 shows variations of the input and output 

parameters and their range. In total, the 

aforementioned parameters of 73 blasting events 

were obtained to construct the predictive models.

 

 
(a) 

 
 

(b) 

 a) A sample of blasting and b) The undesirable backbreak after blasting in the Angouran mine 

Table 1-. Statistical information of input and output parameters 

Category Parameter Symbol Range Average St. deviation 

Input 

Hole diameter (mm) D 102 – 177 - - 

Hole length (m)/ Burden (m) H/B 1.67 - 2.86 2.43 0.35 

Spacing (m)/ Burden (m) S/B 1.00 - 1.29 1.20 0.04 

Stemming (m) ST 3.30 – 4.20 3.78 0.23 

Charge per delay (kg/ms) CHD 2100 – 15900 7728 3508 

Powder factor (kg/m3) PF 401 – 860 568 90 

No. of row NoR 2 – 4 - - 

RQD (%) RQD 35 – 60 47 8 

Output Backbreak BB 3.80 – 7.80 5.03 0.92 
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3- Materials and methods 

3-1- Multiple linear regression analysis 

(MLRA) 

Simple regression analysis can show how a 

single dependent variable is affected by the values of 

one independent variable. This method only 

concerns the Xi variable as a predictor (i.e., 

independent variable) and the Y variable as an 

outcome (i.e., dependent variable). Thus, if two or 

more predictors are used for the simple regression 

analysis, each predictor can separately show an 

individual relationship with the outcome variable. 

Another anomaly of simple regression analysis is 

that it cannot predict the most significant X variable 

among independent variables (Cohen et al. 2003). 

A multiple linear regression model is generally 

expressed by the relationship between a single 

outcome variable (Y) and some explanatory 

variables (Xi), given as: 

𝑌
−

= 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2+. . . +𝑏𝑛𝑋𝑛 (1) 

where the term 𝑌̅ is the predicted value of Y 

(estimated from Xi), a is the intercept, and bi is the 

partial regression coefficients. The multiple 

regression presents two different overlaps: the 

overlap for the combined effect and the overlap for 

the individual effect. 

3-2- Artificial neural network (ANN) 

The artificial neural network is an information-

processing system. In this system, the information is 

processed by several interconnected simple elements 

that are known as neurons, positioned in the 

network’s separated layers. The best neural network 

is the multi-layer perceptron (MLP) which is 

composed of three separate layers: input, output, and 

the intermediate or the hidden layers (Dreyfus 2005). 

The difficulty level of the problem determines the 

number of the hidden layers and neurons (Monjezi et 

al. 2012). 

Neural network performance is dependent on the 

topology or architecture of the network including the 

number of the hidden layer(s) and the number of 

neurons in the hidden layer(s). The network should 

be trained with enough input-output patterns that are 

known as the training pairs (Maulenkamp and Grima 

1999). The training is terminated once the error 

reaches the specified error and the optimum model 

is then specified. Several algorithms have been 

recommended for the training purpose of the neural 

network. The back-propagation (BP) algorithm is the 

most powerful technique for MLP networks as 

mentioned by many scholars (Tonnizam Mohamad 

et al. 2012; Singh et al. 2001; Monjezi et al. 2013). 

In feedforward BP ANNs, artificial neurons are 

organized by layers and send their signals forward. 

In this algorithm, based on the difference between 

the predicted and actual network outputs, the 

weights of the inter-neuron connections are adjusted 

(Kosko 1994). This procedure is known as learning 

or training. The difference between predicted and 

actual outputs is known as a network error. The 

obtained error is propagated back through the 

network and updates the individual weights which 

are named backward pass. The process is repeated 

until the error is converged to a defined level such as 

root mean square error (RMSE) (Simpson 1990). 

3-3- Particle Swarm Optimization (PSO) 

Kennedy and Eberhart (1995) introduced particle 

swarm optimization (PSO) as a population-based 

algorithm. The cognitive and social behavior of the 

swarm is the principal of the PSO. The PSO receives 

many advantages such as: (1) being a fast and easy 

algorithm to understand and implement and (2) 

needing little memory for computation and having 

few parameters to adjust in comparison with genetic 

algorithm. The PSO consists of a swarm of particles 

that search for the best position, including the best 

personal (pbest) and global (gbest) positions, based 

on its best solution (Monjezi et al. 2013; Abdi and 

Giveki 2013). In other words, during each iteration, 

each particle moves in the direction of its best pbest 

and gbest positions. The position and velocity of a 

particle during its moving process can be determined 

as follows: 

𝑉𝑛𝑒𝑤 = 𝑤 × 𝑉 + 𝐶1. 𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑋)
+ 𝐶2. 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋) 

(2) 

𝑋𝑛𝑒𝑤 = 𝑋 + 𝑉𝑛𝑒𝑤 (3) 

where C1 and C2 are two positive acceleration 

constants; V and X denote current velocity and 

position of particles, respectively, while 𝑉𝑛𝑒𝑤  and 

𝑋𝑛𝑒𝑤 denote new velocity and position of particles, 

respectively; w denotes the inertial weight; and 𝑟1 

and 𝑟2 denote the random numbers in (0, 1). 

Learning more about the PSO can be found in many 

studies (Eberhart and Shi 2001; Zhang et al. 2007; 

Yagiz and Karahan 2011; Babanouri et al. 2013; 

Momeni et al. 2015). PSO has been successfully 

applied in several areas such as rock and 

geotechnical engineering. Day by day, the number of 

researches being interested in PSO increases rapidly. 

For instance, Gordan et al. (2016) developed a 

combination of PSO and ANN for predicting factor 

of safety (FOS). Their result demonstrated that the 

PSO can be used as a powerful algorithm to optimize 

the ANN. In another study, presented by Ghasemi et 

al. (2016), it was also found that PSO is a reliable 

algorithm to design the ANFIS. Kalatehjari et al. 

(2014) presented a new method for solving slope 

stability using PSO and concluded that the 

developed model is less restricted than the 

conventional methods. 
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4- Prediction of backbreak 

In the present paper, MLR, ANN, and PSO are 

used to develop a precise and acceptable equation to 

predict backbreak induced by quarry blasting. To 

develop the MLR, ANN, and PSO, eight effective 

parameters on the backbreak including H/B, S/B, 

ST, D, RQD, NoR, PF, and CHD were adopted as 

inputs of the models, while backbreak was set as an 

output parameter. 

4-1- Prediction of backbreak by MLR 

To predict backbreak in the first stage, the 

correlation among main variables was tested by 

Pearson correlation coefficient. The correlation 

coefficient shows the intensity of the linear 

relationship as well as the type of relationship (direct 

or inverse). The range of variables is fluctuating 

between -1 and +1. If the value of this coefficient is 

0, it means that there is no linear relationship 

between the two variables.  The Pearson correlation 

coefficient can be obtained from eq. (4). Table 2 

shows the main variables correlation matrix of this 

study.  

𝐶𝑜𝑟𝑟(𝑦, 𝑥) =
∑(𝑦𝑖 − 𝑦̄)(𝑥𝑖 − 𝑥̄)

√∑(𝑦𝑖 − 𝑦̄)2 ∑(𝑥𝑖 − 𝑥̄)2
 (4) 

where 𝑦𝑖 − 𝑦̄ is the deviation of each observation 

yi from the mean of the variable y and 𝑥𝑖 − 𝑥̄  is the 

deviation of each observation xi from the mean of the 

variable x.

Table 2-. Pearson correlation coefficients matrix for effective parameters on backbreak 

Variables BB H/B D ST PF S/B CH RQD NoR 

BB 1.000         

H/B -0.722 1.000        

D 0.709 -0.877 1.000       

ST 0.520 -0.688 0.711 1.000      

PF -0.351 0.341 -0.362 -0.260 1.000     

S/B -0.309 0.293 -0.211 -0.450 0.174 1.000    

CHD 0.224 -0.157 0.206 0.212 0.502 -0.056 1.000   

RQD -0.203 -0.276 0.347 0.262 0.034 0.064 0.034 1.000  

NoR -0.021 0.033 0.029 -0.004 0.392 0.084 0.482 0.037 1.000 

In this study, 73 datasets are collected from 

practical blasting operations of the Angouran mine. 

The available datasets are grouped into modeling 

and testing datasets. For modeling, 60 data points 

were used whereas remaining (i.e., 13 data points) 

data were taken into account for testing the models.  

In the assumptions of multiple regressions, the 

relationship between variables is assumed to be 

linear and the residuals normally distributed. To 

obtain the linear equation related to backbreak, all 

the parameters are shown in Table 2 as the input, and 

the measured backbreak as the output was analyzed 

by SPSS software. For the backbreak prediction 

equation, 5 has been obtained as the multiple linear 

regression. From equation 5 it was found that some 

parameters showed less effect on the backboard and 

could be omitted. However, all parameters even in a 

low value of coefficients are presented here.  
𝐵𝐵 = 10.255 − 0.943(𝐻/𝐵) + 0.21(𝐷)

− 0.249(𝑆𝑇)
− 0.001(𝑃𝐹). . . 

−1.454(𝑆/𝐵) + 0.0004(𝐶𝐻)
− 0.054(𝑅𝑄𝐷)
− 0.061(𝑁𝑜𝑅) 

(5) 

Regression model coefficients for research 

variables and co-linear variables of the model are 

presented in Table 3.  The values of the variance 

inflation factor and the tolerance show that there is 

no co-linear problem in considered variables. Also, 

the regression statistical characteristics and variance 

analysis is presented in Table 4. 

4-2- Prediction of backbreak by Multiple 

Non-linear Regression Analysis 

In many cases, the linear model predicts a good 

approximation. But we know that the relationships 

between the variables are rarely linear, and these 

relationships may be non-linear. Therefore, in 

addition to the linear models, various nonlinear 

models fitted with the same data used in the linear 

models. For this purpose, four models including 

polynomial, power, exponential, and logarithmic are 

selected. The relationships and determination 

coefficient of the mentioned models are listed in 

Table 5. 
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Table 3-. Regression coefficients and co-linear variables of model 

Dependent 

variables 

Unstandardized 

Coefficients 
Standardized 

Coefficients 
t values 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

Constant 10.255 3.214 - 3.190 - - 

H/B -.943 .378 -.357 -2.497 .213 4.691 

D .021 .006 .529 3.294 .169 5.934 

ST -.249 .425 -.062 -.585 .386 2.592 

PF -.001 .001 -.086 -.886 .463 2.160 

S/B -1.454 1.742 -.065 -.835 .723 1.383 

CH 3.848E-5 .000 .146 1.549 .488 2.050 

RQD -.054 .009 -.465 -6.279 .791 1.264 

NoR -.061 .121 -.039 -.506 .724 1.381 

Table 4-. The regression statistical characteristics and variance analysis 

Model summary 

R R Square 
Adjusted R 

Square 

Std. Error of the 

Estimate 

Durbin-

Watson 
Numbers 

.882a .778 .744 .4716 1.591 60 

Variance analysis 

Model 
Sum of 

Squares 
df Mean Square F Sig. 

Regression 39.841 8 4.980 22.397 .000b 

Residual 11.340 51 .222   

Total 51.182 59    

Table 5-. The relationships and determination coefficient of the developed models 

Performance comparison of the developed 

models is fulfilled using value account for (VAF), 

root mean square error (RMSE), determination 

coefficient (R2) and mean absolute percentage error 

(MAPE). 

Model Equation 
determinatio

n coefficient 

Polynomial 𝐵𝐵 = (
7.291 − 0.917(𝐻/𝐵) + 7.9 × 10−5(𝐷)2 − 0.005(𝑆𝑇)3. . .

−0.29(𝑆/𝐵)5 + 9.2 × 10−7(𝑁𝑜𝑅)8 ) 0.70 

Power 
𝐵𝐵 = 10

[
1.234−0.09(𝐻/𝐵)+0.002(𝐷)−0.031(𝑆𝑇)−8.7×10−5(𝑃𝐹)...

−0.125(𝑆/𝐵)+3.5×10−6(𝐶𝐻)−0.005(𝑅𝑄𝐷)−0.004(𝑁𝑜𝑅)
]
 

0.79 

Exponential 

𝐵𝐵

= 𝑒𝑥𝑝 (
0.317 + 2.385(𝐻/𝐵)−3.266 − 9.463(𝐷)−0.532 + 0.805(𝑆𝑇)−3.98 + 0.338(𝑃𝐹)−2.015 . . .

+1.081(𝑆/𝐵)−0.294 + 0.289(𝐶𝐻)−1.707 + 8.258(𝑅𝑄𝐷)−0.573 − 0.177(𝑁𝑜𝑅)−0.575 ) 
0.80 

Logarithmi

c 

𝐵𝐵

= [
8.168 − 2.548 × 𝐿𝑁(𝐻/𝐵) + 2.341 × 𝐿𝑁(𝐷) − 0.937 × 𝐿𝑁(𝑆𝑇) − 0.619 × 𝐿𝑁(𝑃𝐹). . .
−1.582 × 𝐿𝑁(𝑆/𝐵) + 0.342 × 𝐿𝑁(𝐶𝐻) − 2.450 × 𝐿𝑁(𝑅𝑄𝐷) − 0.365 × 𝐿𝑁(𝑁𝑜𝑅)

] 
0.79 
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(6) 

𝑅2

= 100

[
 
 
 

(∑ (𝑦𝑚𝑒𝑎𝑠 − 𝑦̄𝑚𝑒𝑎𝑠)(𝑦𝑝𝑟𝑒𝑑 − 𝑦̄𝑝𝑟𝑒𝑑)𝑁
𝑖=1 )

2

√∑ (𝑦𝑚𝑒𝑎𝑠 − 𝑦̄𝑚𝑒𝑎𝑠)
2 ∑ (𝑦𝑝𝑟𝑒𝑑 − 𝑦̄𝑝𝑟𝑒𝑑)2𝑁

𝑖=1
𝑁
𝑖=1 ]

 
 
 

 

(7) 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑚𝑒𝑎𝑠 − 𝑦𝑝𝑟𝑒𝑑)2

𝑁

𝑖=1

 

(8) 𝑉𝐴𝐹 = 100 [1 −
𝑣𝑎𝑟( 𝑦𝑚𝑒𝑎𝑠 − 𝑦𝑝𝑟𝑒𝑑)

𝑣𝑎𝑟( 𝑦𝑚𝑒𝑎𝑠)
] 

(9) 𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑦𝑚𝑒𝑎𝑠 − 𝑦𝑝𝑟𝑒𝑑

𝑦𝑚𝑒𝑎𝑠
|

𝑁

𝑖=1

× 100 

where ymeas and ypred are measured and predicted 

values and 𝑦̄𝑚𝑒𝑎𝑠and 𝑦̄𝑝𝑟𝑒𝑑 are the average of 

measured and predicted values, respectively. Also, 

var. means the variance of values. 

RMSE is routinely used as a criterion to show the 

discrepancy between the measured and predicted 

values of the network. The lower the RMSE, the 

more accurate the prediction. Also, the greater the 

VAF and the smaller the MAPE (close to zero), the 

more performance the model. The calculated values 

of these coefficients for different models are 

presented in Table 6. As it shows, the exponential 

model has the best performance to predict 

backbreak.

Table 6-. The obtained values of evaluative criteria for different models 

Model R2 RMSE VAF MAPE 

Linear 0.78 0.44 77.85 0.71 

Polynomial 0.70 0.52 70.36 1.00 

Power 0.80 0.42 79.47 0.65 

Exponential 0.84 0.35 83.24 0.46 

Logarithmic 0.79 0.42 78.89 0.68 

4-3- Sensitivity analysis 

One of the new methods for determining the 

sensitivity of the output to the input parameters is the 

Cosine Amplitude Method (CAM) (Jong and Lee 

2004). In this method, an m-dimensional space is 

assumed where m is the number of input parameters.  
(10) 𝑋 = {𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑚} 

Each of the elements, 𝐗𝐢, in the data array, X is 

itself a vector of length m, i.e.  
(11) 𝑋𝑖 = {𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, . . . , 𝑋𝑖𝑚} 

The cosine amplitude method (CAM) of 

sensitivity analysis was first introduced by Yang and 

Zhang (1997a). This technique was employed to find 

out the most effective input parameters on output 

parameters. In this method, all the data pairs are 

defined as a specific point in m-dimensional space. 

In this way, each of the parameters is directly 

connected to the outputs. The strength of this relation 

Rij is calculated by 

(12) 

𝑅𝑖𝑗 =
∑ 𝑋𝑖𝑘𝑋𝑗𝑘

𝑚
𝑘=1

√∑ 𝑋𝑖𝑘
2 ∑ 𝑋𝑗𝑘

2𝑚
𝑘=1

𝑚
𝑘=1

  𝑖, 𝑗

= 1,2, . . . , 𝑛 
where Xi and Xj are inputs and outputs, 

respectively; and m is the number of all datasets. The 

larger the Rij is, the higher the influence of relevant 

input. From Table 6, it can be inferred that the 

stemming and spacing/burden (S/B) are the most 

influential input parameters on the backbreak. 
The higher the influence of the input parameter 

on the output, the closer the Rij to one. If the input 

parameter is not affected by the output, Rij is zero. 

Typically, the Rij value above 0.9 represents a 

significant effect on the output, and values below 0.8 

represent a weak effect on output (Khandelwal and 

Singh 2007). 

Considering that the exponential model has a 

more accurate prediction of backbreak, sensitivity 

analysis for this model was performed using the 

cosine amplitude method (CAM). Fig. 3 shows that 

the most effective input parameters on backbreak in 

Angouran mine include the length of stemming, 

spacing/burden, hole diameter, number of rows, and 

…, respectively. Based on sensitivity analysis, it was 

also found that the length of stemming and charge 

per delay, respectively, were the most and least 

effective parameters on the backbreak in this case 

study. Note that, the developed equations in the 

present research can be only used in the studied sites. 

 

 Strengths of the relations between independent and 

dependent parameters 
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4-4- Prediction of backbreak by ANN 

model 

The purpose of the ANN training is to determine 

the values of weights to achieve the best network 

based on cost or objective function. Since the output 

value is determined corresponding to the input 

vector, the best learning can be considered as 

supervised learning. Among supervised learning 

algorithms, BP has been received attention in the 

field of engineering. Normally, the number of the 

hidden neuron is obtained using the trial-and-error 

procedure as this method was used in several ANN 

studies (Momeni et al. 2014). If the selected number 

of the hidden neuron is small, the system cannot train 

properly and if the selected number of the hidden 

neuron is large, overfitting (a network obtaining a 

large error) will happen in the ANN modeling. In 

this study, all datasets were divided randomly into 

training and testing datasets. The idea behind using 

some data for testing is to check the performance 

capacity of the developed model. A range of 20–30% 

of whole data was suggested for testing datasets in 

the study by Nelson and Illingworth (Rafig et al. 

2001). So, in this study, 13 datasets(≅ 20%), were 

selected randomly for testing the model 

development, whereas the remaining 60 datasets 

were used for training the ANN models (more than 

40 models). Table 7 shows several ANN models 

applied in this study together with their structures 

and performances. To evaluate the ANN model, 

RMSE was utilized. 

As shown in Table 7, model no. 36 with eight 

inputs, two hidden layers (including 20 and 17 

neurons) and one output (back-break) outperforms 

the other models. In the selected model, the value of 

0.23 was obtained for RMSE. Fig. 4 displays the 

results of the selected model for all data and test data. 

The graphs of predicted backbreak using the 

ANN technique against the measured backbreak for 

training and testing datasets are shown in Fig. 5. R2 

values of 0.931 and 0.942 for training and testing 

datasets, respectively, show that the ANN approach 

can predict backbreak with a high degree of 

accuracy.

Table 7-. Several ANN models and their performance capacities applied in this study 

Model Transfer function Structure RMSE 

5 TANSIG- TANSIG- PURELIN 8-20-1 0.30 

8 TANSIG- TANSIG- PURELIN 8-10-1 0.39 

13 TANSIG- TANSIG- POSLIN 8-15-1 0.35 

18 LOGSIG- LOGSIG- PURELIN 8-8-1 1.06 

23 LOGSIG- LOGSIG- POSLIN 8-18-1 1.05 

27 LOGSIG- LOGSIG- LOGSIG- PURELIN 8-15-12-1 1.10 

30 LOGSIG- LOGSIG- LOGSIG- POSLIN 8-20-16-1 1.12 

33 TANSIG- TANSIG- TANSIG- PURELIN 8-20-15-1 0.46 

36 TANSIG- TANSIG- TANSIG- PURELIN 8-20-17-1 0.23 

41 TANSIG- TANSIG- TANSIG- POSLIN 8-16-12-1 0.32 

 

 
(a) 

 
(b) 

 timized ANN results, a) all data, b) test data 
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4-5- Prediction of backbreak by PSO  

As mentioned earlier, in this study, an attempt 

has been made to increase the performance 

prediction of the regression models by incorporating 

the PSO algorithm to develop a predictive model 

with a higher degree of accuracy for backbreak 

prediction. The followings are the modeling 

procedure of the hybrid Regression-PSO model in 

predicting backbreak. 

 
Train 

 

Test 

 R2 of measured and predicted values of back-break 

for training and testing datasets using ANN 

- Problem Definition: in this section, we 

determine the fitness function, the structure and the 

number of unknown variables, and the lower and 

upper limit of variables. For the problem at hand, the 

objective function is to minimize the mean square 

error (MSE). For instance, the problem definition for 

the exponential model is as follows: 

(13) 

𝑀𝑆𝐸

=
1

𝑁
∑[

𝐵𝐵𝑂𝑏𝑠 − 𝑒𝑥𝑝(𝑤1 + 𝑤2(𝑆/𝐵)𝑤3 + 𝑤4(𝐵)𝑤5 +
𝑤6(𝐻/𝐵)𝑤7 + 𝑤8(𝑀𝐶)𝑤9 + 𝑤10(𝑆𝑇)𝑤11 +
𝑤12(𝑃𝐹)𝑤13 + 𝑤14(𝑁𝑅)𝑤15 + 𝑤16(𝑅𝑀𝑅)𝑤17

]

𝑁

𝑖=1

 

- Definition of algorithm parameters: Based on 

the literature, the most important user specified 

parameters for the implementation of PSO models 

are particle size, inertia weight, and maximum 

iteration number (Sumathi and Paneerselvam 2010; 

Assareh et al. 2010). In this study, these parameters 

were determined using the trial-and-error method. It 

means that different values were considered for each 

parameter and the optimum value was determined 

when the fitness function presents the minimum 

value.  
- Nonlinear different models with unknown 

coefficients were implemented in the PSO 

algorithm.  For this purpose, the same data used in 

regression modeling was used (60 data for training 

and 13 data for testing). Each model was executed 

several times by changing the various parameters of 

the algorithm; this process continued until the 

algorithm reaches the appropriate convergence. 

Table 8 shows the results of evaluation indices for 

different models that are derived from regression 

modeling and the PSO algorithm.    

As depicted in Table 8, better results have been 

achieved in the exponential model. The lack of 

improvement in power and logarithmic models can 

be concluded that these models have achieved the 

optimal answer by regression and no having other 

ability to improve. 

Figs. 6 and 7 show a comparison between 

measured and predicted backbreak for the 

exponential model by PSO, training data, and testing 

data, respectively. 

The exponential equation optimized by PSO was 

developed, as formulated as below: 

(14) 

𝑩𝑩 = 𝒆𝒙𝒑( − 𝟎. 𝟒𝟗 + 𝟐. 𝟒𝟗(𝑺/𝑩)𝟏.𝟏𝟓

− 𝟎.𝟐𝟒(𝑩)𝟎.𝟔𝟐

− 𝟎.𝟐𝟕(𝑯/𝑩)𝟎.𝟔𝟐

− 𝟎.𝟐(𝑴𝑪)−𝟐.𝟓𝟕

− 𝟎.𝟖𝟐(𝑺𝑻)𝟎.𝟗𝟗

+ 𝟎.𝟑𝟑(𝑷𝑭)−𝟏.𝟕𝟕

+ 𝟗(𝑵𝑹)−𝟎.𝟒𝟕

+ 𝟎.𝟏𝟏(𝑹𝑴𝑹)𝟎.𝟒𝟔)  

Table 8-. Comparison of the obtained result of regression and regression-PSO 

Model 
R2 RMSE VAF MAPE 

regression PSO regression PSO regression PSO regression PSO 

Polynomial 0.70 0.74 0.52 0.50 70.36 72.85 1.00 0.95 

Power 0.80 0.80 0.42 0.42 79.47 79.45 0.65 0.57 

Exponential 0.84 0.87 0.35 0.31 83.24 85.02 0.46 0.35 

Logarithmic 0.79 0.80 0.42 0.41 78.89 78.90 0.68 0.65 
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 Comparison of measured and predicted backbreak for exponential model (training data) 

 

 Comparison of measured and predicted backbreak for exponential model (testing data)

5- Conclusion  

In this research, an attempt has been made to 

minimize back-break induced by blasting 

operations. To this aim, Angouran mine in Iran was 

considered and blasting pattern parameters for 73 

operations were collected. In addition, back-break 

was measured in each operation. Considering the 

previous investigations and also collected data from 

the mine; including burden, spacing, hole length, 

stemming, the charge per delay, RQD, number of 

rows, and powder factor were selected as input 

parameters. Initially, using multiple regression 

analysis, different empirical equations were 

presented to predict backbreak. In order to find better 

solutions, the constructed models were implemented 

in PSO algorithms. Also, the prediction of backbreak 

was investigated using ANNs. After the evaluation 

and sensitivity analysis of the models, the following 

results were obtained:  

• The PSO algorithm is a suitable tool for 

optimizing the models and more accurate 

prediction of backbreak. 

• Among the presented empirical models, the 

optimized exponential model with PSO 

algorithm with an RMSE (0.31) and R2 (0.87) 

shows better results in the prediction of 

backbreak and it is suitable for practical use in 

Angouran mine. 

• Considering the sensitivity analysis, the most 

effective input parameters on backbreak in 

Angouran mine include the length of stemming, 

spacing/burden, hole diameter, number of rows, 

and …, respectively. Among the input 

parameters, length of stemming and charge per 
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delay have the most and the least effect on the 

backbreak, respectively. 

• The computed values of the models’ 

performance indices indicate that the ANN 

approach can be a suitable tool to predict 

backbreak. But it should be noted that ANNs do 

not show the definitive mathematical model that 

represents the explicit relation between inputs 

and outputs. 

• results of ANNs show that multilayer networks 

are more powerful and efficient than single-layer 

in the prediction of backbreak. 
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