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Keywords  Abstract 

The seismic response of the smart layer is studied in this article 
based on mathematical modeling and numerical solution. The 
structure is modeled by sinusoidal shear deformation (SSDT) and 
the motion equations are derived by energy method and virtual 
work. The concrete beam is covered by a piezoelectric layer for 
smart control of the structure. The differential quadrature (DQ) and 
Newark methods are applied for numerical solution and dynamic 
response of the smart concrete beam under the earthquake load. The 
influences of boundary conditions; external voltage, and geometrical 
parameters of the beam are studied on the seismic response of the 
smart concrete beam. The results indicate that by applying an 
external negative voltage, the dynamic deflection of the smart 

concrete beam is reduced, which is important for smart control of the system while this phenomenon is 
converse for positive external voltage. 
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1. INTRODUCTION 

Concrete beams are one of the important 
elements of the structure and hence, the dynamic 
analysis of this structure is essential. In addition, 
smart control of the concrete beam under the 
dynamical load is another important subject in 
civil engineering. In this paper, we used a 
piezoelectric layer for smart control of a concrete 

beam based on a numerical solution. 

In the field of mechanical behavior and 
modeling of different structures, Lee and Kim [1] 
studied elastic analysis of two-layers smart beams 
by the spectral element solution method. 
Narayanan and Balamurugan [2] presented a 
numerical solution for laminated structures with 
smart layers as sensors and actuators. Nonlinear 
free vibration of nanocomposite porous beams 
was studied by Rafiee et al [3]. Li et al. [4] 
investigated the bending and vibration of smart 
beams by the energy method. Djojodihardjo et al. 

[5] studied smart control of the cantilevered smart 
beams by the numerical solution. Hajmohammad 
et al. [6] presented smart control and vibration of 
layerwise shells by the DQ method. Zhao et al. [7] 
studied vibration analysis of piezoelectric smart 
beams using Hamilton’s principle. The mechanical 
response of sandwich nanocomposite plates was 
investigated by Mehar et al. [8]. The dynamic 
nonlinear response of the smart laminated 
nanocomposite shell was presented by Mallek et 
al. [9]. The vibration response of smart laminated 
piezoelectric beams under the thermal load was 
studied by Zhao et al. [10]. Hybrid responses of 
nanocomposite plates were studied by Pandey et 
al. [11] using the numerical method of the finite 
element. Khaje khabaz et al. [12] studied the 
vibration smart control of a sandwich beam on a 
micro-scale with piezoelectric layers. Motezaker 
et al. [13] studied the vibration, buckling, and 
bending of smart plates in the nanoscale by the 
numerical method of differential cubature. The 
seismic response of beams and columns was 
presented by Yang et al. [14]. Wang et al. [15] 
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studied the free vibration response of laminated 
smart beams under hygrothermal loads. Pan et al. 
[42] studied the dynamic response of concrete 

beams using experimental analysis. 

For concrete structures, there are some limited 
works such as Zamani et al. [17]. Xiao et al. [18] 
studied an experimental investigation that 
concerns the feasibility of vibro-acoustic 
techniques in buried large-diameter gas pipelines 
for leak detection and location. A model of the 
correlation function of the leak noise in gas pipes 
was developed by Xiao et al. [19]. Xiao et al. [20] 
applied the acoustic method has proven to be 
effective for leak detection and location in gas 
pipelines. Meydani et al. [21] presented a Bayesian 
decision model for the maintenance planning of a 
water pipeline network. Roy et al. [22] 
investigated the effects of water pipe network 
uncertainties on the seismic vulnerability 

assessment of networks. 

This topic is new and important in civil and 
mining engineering since the most important load 
in buildings is an earthquake and good design of 
the structure is essential. Hence, the dynamic 
response of the smart concrete beams under 
earthquake load is presented in this paper for the 
first time. The structure is modeled by SSDT and 
the corresponding motion equations are derived 
by virtual work. The numerical methods of DQ and 
Newmark are applied to obtain the dynamic 
deflection of the structure. The influences of 
boundary conditions; external voltage, and 
geometrical parameters of the beam are studied 
on the seismic response of the smart concrete 
beam. 

2. FORMULATION 

Fig. 1 presents a concrete beam with the smart 
layer under the earthquake load where the length 
and thickness of the beam are shown with L and h, 
respectively. In addition, the smart layer is 
subjected to the external voltage of V0. 

 

 
 

 
 

Fig. 1. Concrete beam with a smart layer under 
earthquake load. 

 

Based on SSDT, the displacement field and the 
corresponding strain relations can be written as 
[23]. 
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Where u and w are middle plane 
displacements. The stress relations for the 
concrete beam and smart layer can be written as 
[24]: 

11 ,c

xx xxC 
 

(6) 

55 ,c

xz xzC 
 

(7) 

11 31 , p

xx xx zQ e E 
 

(8) 

55 15 , p

xz xz xQ e E 
 

(9) 

15 11 , x xz xD e E
 (10) 

31 33 , z xx zD e E
 (11) 

where Cij is elastic constant of 
concrete;𝑄𝑖𝑗  , ∈𝑖𝑗 , and eij  are elastic, dielectric, and 

piezoelectric coefficients of the smart layer, 
respectively, Dx and Dz are electrical 
displacements and Ek is electric which can be 
defined as [24]: 

0
k

2V zz
E cos (x, t) .

h h

   
      

    

(12) 

Hamilton's principle is applied to the motion 
equations as follows: 
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Where m and a(t) are the mass and 
acceleration of the earth, respectively. By 
simplifying the above relation, the following 
motion equations can be derived: 
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where 
E

xN
is the in-plane external load and  
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By inserting Eqs. (4)-(11) into Eqs. (18) and (19), 
we have: 
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where: 
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The general boundary supports as assumed, 
as: 
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3. NUMERICAL SOLUTION 
 

There are a lot of numerical methods to solve 
the initial-and/or boundary value problems which 
occur in the engineering domain. Some of the 
common numerical methods are the finite element 
method (FEM), Galerkin method, finite difference 
method, DQM and etc. FEM and FD methods for 
higher-order modes require a great number of 
grid points. Therefore, these solution methods for 
all these points need more CPU time, while the 
DQM has several benefits that are listed below: 

 DQM is a powerful method that can be 
used to solve numerical problems in the 
analysis of structural and dynamical 
systems. 

 The accuracy and convergence of the 
DQM are higher than FEM. 

 DQM is an accurate method for the 
solution of nonlinear differential 
equations in an approximation of the 
derivatives. 

 This method can easily and exactly satisfy 
a variety of boundary conditions and 
require much less formulation and 
programming effort. 

 Recently, DQM has been extended to 
handle irregularly shaped. 

Due to the above striking merits of the DQM, in 
recent years the method has become increasingly 
popular in the numerical solution of problems in 
engineering and physical science. Based on the DQ 
method, the motion equations can be changed to 
algebraic equations using [24]: 
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where the weighting constants of Cij and 
Chebyshev's polynomial roots are: 
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Finally, the matrix form of the motion equations is: 
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Where [M] and  [K] are, respectively, the 
matrix of mass and stiffness, respectively; index b 
and d are boundary and domain points, 
respectively.  The above relation based on 
Newmark's numerical method can be written as 
[25]: 
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Where γ=0.5 and χ=0.25. The velocity and 
acceleration vectors can be found in [25]. By the 
above numerical method, the dynamic deflection 
of the structure can be obtained.  

4. RESULTS AND DISCUSSION 

In the results section, a concrete beam with a 
length of 3 m and a thickness of 30 cm is assumed. 

The elastic modulus of concrete is 
20cE GPa

and Poisson's ratio is 0.3
c  . For the smart layer 

made from Polyvinylidene fluoride (PVDF), we 
have elastic constants of 𝑄11 = 8 𝐺𝑃𝑎  and 𝑄55 =
1.8 𝐺𝑃𝑎; piezoelectric constants of 𝑒31 = −0.51 𝑐/
𝑚2   and 𝑒15 = −0.45 𝑐/𝑚2   as well as the 
dielectric constant of ∈15= 7.77𝑒 − 8 𝐹/𝑚 . The 
acceleration of the Cape Mendocino earthquake is 
presented in Fig. 2 for the case study. 

 
Fig. 2. Acceleration of the Cape Mendocino earthquake. 

 

Since the model of this paper is new and a similar 
paper cannot be found in the literature, we 
computed the results with two methods of 
Newmark and Runge-Kutta and compared 
outcomes in Fig. 3.  
For the exact solution, we applied the Navier 
method for the pipe with simply-simply boundary 
conditions with below dynamic deflections: 
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By substituting Eq. (33) into motion equations, 
we have the below final motion equation: 

(34)            ( ) ,K d C d M d Ma t     

Finally, with the Newmark method, we can 
obtain the dynamic deflection. As can be seen, the 
results of the two methods match each other. 

 

Fig. 3. Comparison of Newmark and Runge-Kutta 
methods. 

Fig. 4 illustrates the DQ convergence on the 
dynamic deflection of the smart sandwich beam. It 
is obvious that by enhancing the number of grid 
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points, the maximum dynamic deflection is 
decreased until N=15. After N-15, the results 
converged and we did have not any change in the 
results.  

Fig. 4. Convergence of the DQ method for the dynamic 
deflection of the smart sandwich beam. 

The external voltage effect on the dynamic 
deflection of the smart sandwich beam is 
presented in Fig. 5. It is concluded that by applying 
an external negative voltage to the smart layer, the 
dynamic deflection is reduced while this is the 
converse for the external positive voltage. It is 
reasonable since by applying external negative 
and positive voltages to the smart layer, a 
compressive and tensile load will be induced in 
the structure, respectively. The results of this 
figure are very important for the smart control of 
the structure. 

 

Fig. 5. The influence of external voltage on the dynamic 
deflection of the smart sandwich beam. 

Fig. 6 demonstrates the ratio of smart to 
concrete thickness on the dynamic deflection of 
the smart sandwich beam. It is obvious that by 
enhancing the ratio of smart to concrete thickness, 
the dynamic deflection is reduced due to more 
stiffness in the structure.  

 

 

Fig. 6. The influence of the ratio of smart to concrete 
thickness on the dynamic displacement of the smart 
sandwich beam. 

Fig. 7 shows the effect of various boundary 
conditions on the dynamic deflection of the smart 
sandwich beam. As it is found, the concrete beam 
with both ends clamped has lower dynamic 
deflection with respect to SS or CS concrete beam. 
It is because in this case, we have more bending 
rigidity. 

 

Fig. 7. The influence of boundary conditions on the 
dynamic displacement of the smart sandwich beam. 

The effect of the beam length on the dynamic 
displacement is presented in Fig. 8. It can be seen 
that with increasing the length of the concrete 
beam, the dynamic deflection is increased since 
the stiffness of the structure is reduced.  
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Fig. 8. The influence of the beam length on the dynamic 
displacement of the smart sandwich beam. 

5. CONCLUSION 

On the basis of mathematical modeling and 
numerical solution, seismic response and smart 
control of the concrete beam were presented in 
this paper. . The SSDT was applied for modeling 
and the corresponding motion equations were 
derived by the energy method. DQ and Newmark 
methods were used for the dynamic response of 
the smart sandwich concrete beam. The influences 
of boundary conditions; external voltage, and 
geometrical parameters of the beam were studied 
on the seismic response of the smart concrete 
beam. The results show that: 

 It was obvious that by enhancing the 
number of grid points, the maximum 
dynamic deflection was decreased until 
N=15. After N-15, the results converged 
and we did have not any change in the 
results . 

 Applying the negative voltage, the 
dynamic deflection of the structure 
decreased, which was very important for 
the smart control of the concrete 
structure . 

 It was obvious that by enhancing the ratio 
of smart to concrete thickness, the 
dynamic deflection was reduced due to 
more stiffness in the structure . 

 The concrete beam with both ends 
clamped has lower dynamic deflection 
with respect to SS or CS concrete beam . 

 It can be seen that with increasing the 
length of the concrete beam, the dynamic 
deflection was increased. 
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