
 

 

Analytical and Numerical Methods in Mining Engineering Vol. 12, No. 33, Winter 2023, pages 1-15 

 

1 
 

 

Numerical analysis of the deformational behavior of hydrocarbon 

reservoirs based on an improved elastoplastic constitutive model 

O. Roshan1, E. Taheri1*  

1- Dept. of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran 

 

* Corresponding Author: e_taheri@modares.ac.ir 

(Received: February 2022, Accepted: December 2022) 

 

Keywords  Abstract 

The goal of the current research is to make more comprehensive the 
elastoplastic stresses effects and oil reservoirs behave in solid 
phase. These stresses are largely caused by the behavior of 
subsurface fluid in reservoirs. In reservoir formations, there are 
frequently significant spatial changes at various length scales. 
Additionally, a number of physical events influence the flow model 
in various hierarchies. To fully describe the flow and deformation 
concerning all of these sizes, more computing power is required. One 

of the principal problems in the oil field business has always been how to describe, optimize, and simulate 
the behavior of the solid portion of oil reservoirs. To model fluid flow in reservoirs, deformable media, and 
porous media, more effectively, several scales must be taken into account. This approach is difficult in 
different scales, and the results of the simulation's speed, accuracy, and precision indicates this. A hybrid 
multi-physical multi-scale model has recently been developed as a solution to this problem. The goal of the 
current work is to update this model to represent solid-phase deformations better. For this improvement, 
the model is changed into a geomechanical model with the capacity to simulate a plastic region using an 
integrated yield function as well as using an implicit technique to solve convergence equations concurrently. 
The simulation outcomes demonstrate that the improved multi-scale mixed physical model is an effective 
model for modelling oil reservoirs with elastoplastic deformation. This model's calculation speed and 
accuracy have been tested, and the results are satisfactory. In addition, this paper modeled land subsidence, 
which Sokolova et al. claim is impacted by a lack of reservoirs, and it fits quite well with other studies. Results 
have demonstrated that plastic stresses affect both the rate of oil production and the behavior of subsidence. 
It can be included as a safety feature for infrastructure and oil surface plants. 
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1. INTRODUCTION 

Increasing the accuracy and precision of oil 
reservoir modeling is evident due to the growing 
demand of this market on a global scale. To meet 
this level of demand, increasing oil extraction 
rates and production rate must be optimized. 
Some valuable research was carried out in the 
field of hydraulic fracturing and simulating of the 
thermos-hydro mechanical simulation of oil 
reservoirs [1-3]. However, estimation and 
calculation of the optimal location of injection 
wells as well as development of tools and 
operating method are important issues [4]. In this 
regard, simulating and modeling the operation of 
reservoirs play an important role. On the other 

hand, simulation with high accuracy in a shorter 
and more efficient time has been one of the 
constant challenges in this field. Concerning large 
oil companies, modeling strategy plays a major 
role in their production strategy [5]. In oil 
reservoirs modeling, the range of scales varies 
from millimeters to kilometers, and these scale 
changes affect the kinetic behavior of the fluid into 
a reservoir [4]. In order to optimize a simulation, 
calculating and considering all variables at all 
scales at the same time does not make sense. 
Therefore, it seems necessary to invent and 
develop a method that can maintain valuable 
information of any scale and process it at the 
domain of influence. Multi-scale methods for 
simulating porous oil reservoirs and subsurface 
layers have been developed to reduce costs and 
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computational time [6]. In MSFV, the fine scale 
mass and velocity are balanced. As a result, this 
method is suitable for modeling fluid behavior and 
its interaction with the solid phase [7]. The fluid 
and solid phases are solved in pairs and 
simultaneously at each time step and a nonlinear 
loop [8] 

In 2019 Skolova et al. worked on Multiscale 
finite volume method for finite-volume-based 
simulation of poroelasticity. They proposed a 
multiscale finite volume method (MSFV) for the 
simulation of coupled flow-deformation in 
heterogeneous porous media under elastic 
deformation (i.e., poroelastic model). They 
investigated the fine-scale fully resolved system of 
equations was obtained based on a conservative 
finite-volume method. In this model, the 
displacement and pore pressure unknowns were 
located in a staggered configuration. The coupling 
was instructed through a coupled formulation. On 
this coupled finite volume technique, coarse-scale 
grids for flow and deformation were imposed. 
They mentioned that local basis positions for 
scalar pore pressure and vectorial displacement 
unknowns were then solved over their individual 
local domains. At the beginning of the simulation, 
and reused for the rest of the time-dependent 
simulations. These local basis functions are then 
clustered to form the prolongation operator. In the 
proposed multiscale system, finite-volume 
restriction operators for poroelastic systems were 
utilized. Once the coarse-scale system was solved, 
its solution was prolonged back to the original 
fine-scale resolution, providing the approximate 
fine-scale solution. The finite-volume multiscale 
formulation provided conservative stress and 
mass flux in fine and coarse scale. Several 
numerical test cases were provided first to 
validate the fine-scale finite-volume discrete fully-
implicit simulation, and then to investigate the 
accuracy of the proposed multiscale formulation. 
To recapitulate, the model results are compared 
with hybrid multiscale Finite Element-Finite 
Volume (h-MSFE-FV). Our multiscale method 
enables quantification of the elastic 
geomechanical behavior via using only a fraction 
of the fine-scale grid cells, even for highly 
heterogeneous time-dependent models. As such, it 
casts a promising approach for field-scale 
quantification of the mechanical deformation and 
stress field due to injection and production in a 
subsurface formation [9]. 

In 2016 Castelletto et al. worked on multiscale 
finite-element method for linear elastic 
geomechanics. They examined the demand for 
accurate and efficient simulation of 
geomechanical effects, was widely increasing in 

the geoscience community. High resolution 
characterizations of the mechanical properties of 
subsurface formations were essential to enhance 
modeling predictions. Such detailed descriptions 
imposed hard computational challenges and 
motivate the development of multiscale solution 
strategies. They proposed a multiscale solution 
framework for the geomechanical equilibrium 
problem of heterogeneous porous media based on 
the finite-element method. After imposing a 
coarse-scale grid on the given fine-scale problem, 
the coarse-scale basis functions were obtained by 
solving local equilibrium problems within coarse 
elements. Their basis functions form the 
restriction and prolongation operators used to 
obtain the coarse-scale system for the 
displacement-vector. In conclusion, a two-stage 
preconditioner that couples the multiscale system 
with a smoother was derived for the iterative 
solution of the fine-scale linear system. 
Furthermore, various numerical experiments 
were presented to demonstrate accuracy and 
robustness of the method [10]. 

In 2015 Tene et al. worked on adaptive 
algebraic multiscale solver for compressible Flow 
in heterogeneous porous media. They examined 
the recently developed AMS for incompressible 
(linear) flows [Wang et al., JCP, 2014], C-AMS 
operates by defining primal and dual-coarse 
blocks on top of the fine-scale grid. Furthermore, 
they mentioned that these coarse grids facilitate 
the construction of a conservative (finite volume) 
coarse-scale system and the computation of local 
basis functions, respectively. Therefore, several 
basis function formulations (incompressible and 
compressible, with and without accumulation) are 
considered to construct an efficient multiscale 
prolongation operator. As for the restriction 
operator, C-AMS allows for both multiscale finite 
volume (MSFV) and finite element (MSFE) 
methods. Finally, to resolve high-frequency errors, 
fine-scale (pre-and-post) smoother stages are 
employed. They examine different factors for 
reducing computational expense, and they found 
that the C-AMS operators (prolongation, 
restriction, and smoothers) are updated 
adaptively. In this regard, they indicated that an 
efficient C-AMS strategy for heterogeneous 3D 
compressible problems is developed based on 
overall CPU times. In conclusion, C-AMS is 
compared against an industrial-grade Algebraic 
Multigrid (AMG) solver. The results of this 
comparison illustrate that the C-AMS is quite 
efficient as a nonlinear solver, and precise when 
iterated to machine accuracy [11]. 

In 2015 Cusini et al. examined the constrained 
pressure residual multiscale (CPR-MS) method for 
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fully implicit simulation of multiphase flow in 
porous media. They investigated the first 
multiscale method for fully implicit (FIM) 
simulations of multiphase flow in porous media, 
namely CPR-MS method. In their article built on 
the FIM Jacobian matrix, the pressure system was 
obtained by employing a constrained pressure 
residual (CPR) operator. Multiscale finite element 
(MSFE) and finite volume (MSFV) methods were 
then formulated algebraically to obtain efficient 
and accurate solutions to their pressure equation. 
They consider the multiscale prediction stage 
(first-stage) was coupled with a corrector stage 
(second-stage) employed on the full system 
residual. The converged solution was enhanced 
through outer GMRES iterations preconditioned 
by these first and second-stage operators. While 
the second-stage FIM stage was solved using a 
classical iterative solver, the multiscale stage was 
investigated in full detail. They concluded that 
several choices for fine-scale pre-and post-
smoothing along with different choices of coarse-
scale solvers are considered for a range of 
heterogeneous three-dimensional cases with 
capillarity and three-phase systems. Finally, they 
mentioned that the CPR-MS method is the first of 
its kind and extends the applicability of the so-far-
developed multiscale methods (both MSFE and 
MSFV) to displacements with strong coupling 
terms [12]. 

In 2014 Hajibeigi and his coworker worked on 
compositional multiscale finite-volume 
formulation. They investigated a sequential-
implicit strategy was used to deal with the 
coupling of the flow (pressure) and transport 
(component overall concentration) problems. In 
their article compositional formulation, the 
overall continuity equation was used to formulate 
the pressure equation. The resulting pressure 
equation conserves total mass by construction 
and depends weakly on the distributions of the 
phase compositions. The transport equations 
were expressed in terms of the overall 
composition; hence, phase-appearance and -
disappearance effects do not appear explicitly in 
these expressions. Details of the MSFV strategy for 
the pressure equation were described in their 
article. The only source of error in this MSFV 
framework is the localization assumption. No 
additional assumptions related to complex 
physics were used. To recapitulate, for ID 
problems, the sequential strategy was validated 
against solutions obtained by a fully implicit 
simulator. The accuracy of the MSFV method for 
compositional simulations was then illustrated for 
different test cases [13]. 

In 2016 Wang et al. investigated monotone 
multiscale finite volume method. They 
investigated the causes of the non-monotone 
solutions which were identified and connected to 
the local flux across the boundaries of primal 
coarse cells induced by the basis functions. They 
proposed a monotone MSFV (m-MSFV) method 
based on a local stencil-fix that guarantees 
monotonicity of the coarse-scale operator. 
Detection of non-physical transmissibility 
coefficients that lead to non-monotone solutions 
was achieved only by using local information and 
aimed to perform algebraically. For investigating 
the ‘critical’ primal coarse-grid interfaces, a 
monotone local flux approximation, specifically, a 
Two-Point Flux Approximation (TPFA), was 
employed. For practical applications, an adaptive 
approach based on normalized positive off-
diagonal coarse scale transmissibility coefficients 
was developed by them. Based on the histogram of 
these normalized coefficients, they can remove the 
large peaks by applying the proposed 
modifications only for a small fraction of the 
primal coarse grids. Finally, the m-MSFV approach 
can guarantee monotonicity of the solutions to any 
desired level. Numerical results illustrate that 
employing the m-MSFV modifications only for a 
small fraction of the domain can significantly 
reduce the nonmonotonicity of the conservative 
MSFV solutions [14]. 

In 2015, Taheri et al. presented a multi-scale 
multi-physical hybrid model M3GM (Mixed 
Multiscale Multiphysics Geomechanical Model), 
which is also the main basis of the present study 
[15]. In the mentioned model, the solid phase 
deformations are calculated by elastic equations. 
Then the effect of surrounding rocks on the 
deformation of the reservoir is considered [16]. In 
geotechnical studies, applying a comprehensive 
hydraulic and mechanical model for saturated and 
semi-saturated rocks and soils has always been 
discussed. The saturation degree effect and 
volumetric strain on the mechanical and hydraulic 
behavior of the characteristic model has always 
been important. In this regard, in order to model 
M3GM, which is the basis of the present study, a 
unified model has been used to simulate the solid 
phase more accurately. This model in 2018 is as 
CASM model or unified bounding surface model 
which Moghadam et al. in order to improve the 
problems caused by explicit integration method in 
the models, using the implicit integration method 
to model the behavior of clay and sand to simulate 
sand liquefaction presented. Moreover, utilizing 
constitutive models for coupling of hydraulic and 
mechanical behaviors of unsaturated soils and 
rocks is an interesting subject in geotechnical 
studies. In this regard, the plastic framework was 
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developed by Moghadam and his colleagues for 
considering elastic and plastic deformation in an 
implicit approach [17]. The results obtained from 
the CASM model aforementioned that this model 
showed a good performance in compare to 
previous model. 

In 2015 Nikadat et al. presented a numerical 
modelling of stress analysis around rectangular 
tunnels with large discontinuities (fault) by a 
hybridized indirect BEM. They investigated the 
effect of large discontinuities (fault) behavior on a 
jointed medium around the rectangular tunnel. 
The stress distribution around the tunnels dug in 
jointed rock masses was investigated using a 
hybridized indirect boundary element algorithm 
called TFSDDM (fictitious stress displacement 
discontinuity technique). For a more precise 
analysis of discontinuity effects, their code 
combined the benefits of the fake stress and 
displacement discontinuity approaches. Their 
findings demonstrate that the stress distribution 
around the tunnel was significantly impacted by 
the dip angle of discontinuities. Additionally, it 
was demonstrated that increasing the 
discontinuities dip angle in the roof will provide a 
reduction in the roof's tensile stress. In the roof, 
stresses reached 8 MPa, but because of the 
dilatation effect, they increased to 13 MPa [18]. 

Also, its finite element program in soil and rock 
environments has shown good results due to the 
stress space q-p'. This model was proposed based 
on the concept of bounding surface and using the 
implicit method. For this purpose, it was applied 
as a base model in the upgraded model of multi-
scale multi-physical plastic in the solid phase. In 
order to establish the interaction of fluid and solid 
in an oil reservoir, several series of coupling 
equations must be solved simultaneously. So, 
obtaining a proper rate in all sectors, demand for 
a proper prototype and its compatibility with the 
base model is undeniable. Hence, the use of the 
implicit method (skin) and Newton-Raphson 
modified rings in the new model has greatly 
contributed to this framework. Furthermore, due 
to the integration of the submission function 
under the shapeable program and the new 
formulation, it is possible to have a better 
simulation of the solid phase in oil reservoirs. The 
unified plastic constitutive model uses the radial 
mapping role and simulation of smooth behavior 
to predict and model the interaction with fluid 
phases in the base model. The base model also 
uses the law of isotropic hardening for the solid 
phase. 

 

2. MODEL INTRODUCTION 

In this section, an enhanced mixed multi-scale 
multi-physics geomechanical model (EM3GM) is 
introduced. First, the governing equations 
examination for presenting the multi-scale 
method of finite volumes and the model 
mechanism is introduced, then the plastic model 
in rock is introduced. Finally, the interaction of the 
fluid and solid phases and the coexistence of both 
models to obtain a unified scheme are expressed. 
The third section also provides examples for 
model validation. 

2.1. The governing equations and the EM3GM 
model 

The inclusive phase system in this model 
consists of a combination of a deformable porous 
media as the solid phase and water, gas and oil as 
the fluid phase. The solid phase is examined from 
the Lagrangian point of view and the fluid phase 
from the Eulerian point of view. It is important to 
note that the fluid phase and the solid phase 
behave separately in the context of 
multidimensional models of finite volumes and 
finite components. 

The inclusive phase system in this model 
consists of a combination of a deformable porous 
media as the solid phase and water, gas and oil as 
the fluid phase. The solid phase is examined from 
the Lagrangian point of view and the fluid phase 
from the Eulerian point of view. It is important to 
note that the fluid phase and the solid phase 
behave separately in the context of 
multidimensional models of finite volumes and 
finite components. 

( )
D

S S m
Dt

             (1) 

In the above equation 𝜑 porosity is  𝜌𝛼  phase 
density and 𝑆𝛼  is the degree of phase saturation 
and 𝜈𝛼 is the phase velocity. Also, �̇�𝛼 stands for 
wells and source terms. In the following, according 
to the definition of relative velocity, which is 
𝑊 = 𝜈𝛼 − 𝜈𝑠  , and with a little mathematical 
work: 

( ) ( )
s

s

D
S S w S m

Dt
                  (2) 

After summation of the phases, we will have:  



 

 

Numerical analysis of the deformational behavior of … Analytical and Numerical Methods in Mining Engineering 

 

5 
 

1 1

1 1

( )

p p

p p

n ns s

n n

s

D D
S S

Dt Dt

S w S m

   

 
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 


  

    

 

 

 

   

 

 

 
(3) 

Equation 3 is the general equation of fluid 
motion in a porous media. However, to obtain the 
interaction behavior of each phase, the 
momentum equation of equilibrium of each phase 
must also be considered. 

To investigate the momentum equilibrium for 
fluid phases, several assumptions are considered: 

 Fluid flow follows Darcy's law 
 Small solid phase velocity and 

acceleration are ignored 
 Solid particles are incompressible  

The linear equation of the momentum 
equilibrium of the fluid phases is as follows: 

.( )S w p g       
 

(4) 

In the above equation 𝜆𝛼 is the phase mobility 

tensor which is defined as the equation 𝜆𝛼 =
𝐾𝑘𝑟𝛼

𝜇𝛼
. 

In this equation K is the absolute permeability 
tensor, 𝑘𝑟𝛼  is the relative permeability and 𝜇𝛼  is 
the viscosity of each phase. Placing Equation 4 in 
Equation 3 and considering the phase mobility 
capability we will have: 

1 1

1 1

.( .( ))

p p

p p

n ns s

n n

s

D D
S S

Dt Dt

Kkr
p g S m

   

 


    

 


  

    


 

 

 

     

 

 

 
(5) 

The solid phase equilibrium equation is 
transformed as follows: 

. 0g     (6) 

It is important to note that in the rock 
mechanics, effective stress is generally 
considered, so we will have an effective stress 
equation: 

Ip     (7) 

In the above equation, p is the fluid pressure. 
Considering the relationship between strain and 
deformation and defining volumetric strain and 
solid phase velocity, we have: 

1 1

1 1

.( .( ))

p p

p p

n ns s

n n

vol

D D
S S

Dt Dt

Kkr
p g S m

t

   

 


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 


  


   



 

 

 

    


 

 

 
(8) 

Also, the degree of phase saturation is 
considered as Equation 9. 

1

1
pn

S


  (9) 

After introducing the original phase equations, 
the equations of the enhanced mixed multi-scale 
multi-physics model are expressed: After 
discretizing Equation 8, we have: 

1 1 1
1

1 1 1 1 1 1

1
1

.( ( )

n n n n n n
n n n

n n n n n n

n n
n

S S
S

t t

p g z S

q
t

   
  

     

 
 

   
 

    

 


  

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


 


 
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




 
(10) 

After separating the phase density and to 
obtain the pressure equation and after the 
summation of the phases, we will have: 

 
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1
1 1 1

1 1

1
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
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 (11) 

 

Where 𝑞𝑡 = ∑ 𝑞𝛼
𝑛𝑝

𝛼=1  is the flow rate and Bα is 

the volumetric factor (phase density inverse). The 
linearization of the above equation results in an 

iterative pressure equation. 

2
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1

1
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( ) .( )
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(12) 

The new and old iteration steps are denoted by 
𝜈 + 1 and 𝜈. In the following: 

1

pn

n n

c

B
C S

p

 
 



 



 


  (13) 
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In Equation 13 Cc is the coefficient of 
compressibility. In the following term, convection 
as: 

1 1

1

1

.( ) .( . ) ( . )

.( )

p

p

n

t t

n

B p p p

B p

    
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

  
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

   

 

 





      
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



 
(14) 

By placing Equation 14 in Equation 12 we will 
have: 

1 1( ) .( . )c
t

C
p p p RHS

t

       


 (15) 

Which in Equation 15: 
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(16) 

 

The structure of the multi-scale finite volume 
method is based on two categories of networking 
called large networking (Figure 1 on the right) and 
auxiliary networking (Figure 1 on the left). The 
large network consists of M large cells (Ω𝑘 ∈
[1, 𝑀]) and the auxiliary network consists of N 

helper cells (Ωℎ ∈ [1, 𝑁]). 

 
Fig. 1. Displays large cells, helper cells, and internal 
microgrids, as well as helper cell boundaries. The eight-
node element is displayed on the left. 

The MSFV structure has two main operators. 
The first uses the integration of microscale 
pressures obtained from two series of basic and 
correction functions 𝜑𝑘

ℎ  and 𝜑ℎ  , to increase the 
permeability effect to a higher scale. The second 
operator uses the above functions to obtain a 
stable microscale pressure. Unlike classical 
methods, these operators are not analytic 
functions, but are derived from the public and 
private solution of Equation 15. More precisely, 
the basic and corrective functions of the public 

and private solutions of Equation 15 are reduced 
by considering the boundary conditions. 

( . )(( . ) 0h h

t kn      (17) 

( . )(( . ). )h h h

tn n RHS     (18) 

In the above equations, 
hn is the normal vector 

out of the 𝜕∅ℎ  boundary. The boundary conditions 
at the nodes of the center of the auxiliary network 
are 𝑥1 as ∅ℎ(𝑥1) = 0  and ∅𝑘

ℎ(𝑥1) = 𝛿𝑘𝑙 . It is worth 
noting that the magnitude of physical phenomena 
such as capillaries, mass exchange between 
phases in RHS equation 18 is seen with the 
distribution of correction functions. By 
overlapping two sets of functions, the microscale 

pressure is obtained as follows. 

1 1

( ) ( ) ( ( ( ) ( ))
N M

h h

f k k

h k

p x p x x p x 
 

     (19) 

In the above equation  𝑝𝑘  the pressure at the 
center of the nodes of each large cell is  𝑥𝑘  . By 
placing equation 19 in equation 15 and integrating 
it into large cells and applying Gauss's law, we 
have: 

1

1 1

1

1 1

( ( ( ) )

( . ( ( )).

N M
h hc

k k
l

h k

N M
h h

t k k l
l

h k

C
p p d

t

p n d RHS





 

 

 

  




 



 
 

   


   

 

  

 (20) 

The result of the above equation is a repeating 
nonlinear equation system. 

1 v

lk k lA p b    (21) 

1

( ( . )
N

h hc
lk k t k l

L
h

C
A d n d

t
  

 


    


    (22) 

1

( ) ( )

. . )

N
v hc c
l

h

h

t l

C C
b RHS p d d

t t

n d





  

 

 




   
 

  

 



 
(23) 

The iteration process continues until it reaches 

the convergence limit. 1p p     . 

The resulting pressure field is not constant, a 
condition that is necessary to solve the transfer 
equation. As a result, another step is needed to 
stabilize the pressure field. It has already been 
stated that the pressure field is applied to obtain a 
microscale flux in each large cell. Equation 15 is 
solved by the Newman boundary condition at the 
microscale pressure. 
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.( . )t p RHS    
 (24) 

With,  −𝜆𝑡 . 𝛻𝑝 ̋ in 𝜕Ω𝑘 . The new pressure field 
p is constant and can be used to solve the mass 

equation (Equation 3). 

2.2. Solid phase discretization and FE structure  

In order to discretize the solid phase 
momentum equation, the Galerkin method is used 
regardless of the volumetric forces: 

( ) ( ) 0t T t T

u u
u

W L g d W L t d  
 

       (25) 

 

In the above equation, 𝑊𝑢
𝑡   and �̅�𝑢

𝑡   are weight 
functions on boundaries. L is the skeletal tangent 
constant and 𝑡̅ is the amount of external force on 
the boundaries of the environment 

Applying the Gaussian law where 𝐵 = 𝐿𝑁𝑢 we 
have: 

N

T T

uB d N td
 

     (26) 

 

Which in the above equation Nu  is a function of 
shape. By applying the strain stress relationships 
of the equation as: 

( ) ( )
N

T T T

uB D d N td B pm d
  

       (27) 

 

In the above equation, D is a plastic matrix. In 
the following, by using the relations of stress and 
displacement and using the functions of shape, we 
will have the relation B=LNu : 

ˆ( ( ) ) ( )
N

T T T

uB DB d u N td B pm d
  

        (28) 

 
The device creates the following equation to 

move the nodes u. 

ˆKu F  (29) 

ˆ( ) )TK B DB d u


   (30) 

( )
N

T T

uF N td B pm d
 

       (31) 

 
The second part of the right-hand side of the 

equation, called F2 , is obtained by integrating all 
the tiny cells into one large cell. 

2

1

. .
i nfs

T

i i

i

F B P m A




   (28) 

In the above relation Pi is the microscale 
pressure and A is the sectional area of each cell. 

2.3. Plastic response 

General formulation of the model is 3D stress 
space in the rock. According to the definitions of 
effective stress formulas, the mean and deviatoric 
are represented by P' and q, respectively. Finally, 
it is assumed that the strain has been decomposed, 
it is from 2 parts elastic and plastic. After stating 
the definitions of the general parameters, the 
critical state of the rock must be defined. This 
condition occurs in the rock when the stress and 
dilation ratio reach zero and the shear strain 
occurs. In the present model, this state is shown as 
a line in the 𝑒 − 𝑙𝑛 𝑝 ́  space. In the following 
equations are expressed: 

lncr cre e p
 

 (33) 

crq M p   (34) 

In order to introduce the elastic behavior of the 
model, volumetric and shear modulus are defined: 

p
K

k

 


 
(35) 

3(1 2 )

2(1 )
G K









 (36) 

In the mentioned relations 𝜈 = 1 + 𝑒  specific 
volume, K shows the slope of the loading-
unloading line in the plane 𝜈 − 𝑙𝑛 𝑝 ́ and 𝜇 

represents the Poisson’s ratio. 

It was also mentioned in the original model 
that the solid phase in finite elements comprises 
part of the elastic matrix. But the plastic behavior 
of the model is not affiliated with the classical 
models. Because in classical models, the inner 
region of the yield surface is completely elastic 
[19]. This assumption depicts that in such models 
the behavior of the rock does not exceed the 
elastic state until the yield value is reached. When 
the rock reaches the yield surface, it then 
simulates the plastic behavior. This means 
predicting elasticity to the yield surface and then 
the behavior of the plastic, causing an abrupt 
behavior from elastic to plastic in the rock. 
However, laboratory observations show that the 
behavior in rocks in transition from elastic to 

plastic is gradual. 

In the present model, in order to eliminate this 
defect and to predict more accurately, plus, 
simulating the behavior of the rock in transition 
from elastic to plastic, the concept of the 
surrounding surface and sub-loading surface have 
been used. The concept of bounding surface was 
first proposed by Dafalias and Popov and the sub-
loading surface examined by Hashiguchi   [20]. 
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This is the case in the bounding surface theory, 
and it is assumed that the deformation of the 
plastic begins from the very beginning of the load. 
It is further assumed that the elastic part 
decreases to a point [20]. Two levels, internal and 
external, are used to describe this type of 
behavior. Description of these two hypothetical 
surfaces is that the inner surface is considered as 
the loading surface and it is assumed that the 
stress point definitely passes through this surface. 
The bounding surface in this theory is the same as 
the external level. The image of the stress state is 
placed on this surface. 

 

Fig. 2. Loading surface, bounding surface and radial 
mapping law, according to the bounding surface theory 
[21]. 

However, the law of radial mapping has been 
used to explain how the state of stress is depicted 
on the bounding surface. Accordingly, the stress 
point of the image on the bounding surface is 
determined by the straight line passing through 
the origin of the stress space and the current 
stress point on the loading surface, the image 
stress on the bounding surface [19]. 

Due to the geometric similarity of the loading 
and bounding surface, the following relation is 
established for the stress components: 

c

j j j cj

pq p

q p p







   

 
 

(37) 

In this equation, 𝜇 is defined as the ratio of the 
size of the surfaces and the amount of distance of 
the loading surface to the bounding surface. In the 
above relation, 𝜎 characterizes the current stress 
state, P' indicates the mean effective stress 
component and 𝑞 is the differential stress 
component corresponds to the current stress 
state. In addition, 𝜎𝑗  represents the image stress 

state on the bounding surface, 𝑝𝑗
′  represents the 

mean effective stress component, and 𝑞𝑗   

represents the differential stress component 
corresponding to the image stress state. Also, 𝑝𝑐

′  

controls the size of the loading surface and 𝑝𝑔
′ is the 

isotropic hardening parameter and determines 
the size of the bounding surface [19]. 

After expressing the bounding level, it is time 
to load the surface. To describe this level in rocks, 
the U-yield function in the model is used. 

This function is defined according to the 
following relation: 

( ) ( ) ln( ) / ln( )N

cr c

q p
F R

M p p



 

 
 (38) 

Where N and R are the parameters of the 
material. The N controls the shape of the loading 
surface, and the R expresses the ratio between the 
values of  P' and 𝑝𝑐

′  at the point of collision of the 

yield surface and the line of the critical state. 

Also, the bounding surface function as: 

( ) ( ) ln( ) / ln( )
j jN

J

cr j cj

q p
F R

M p p



 

 
 (39) 

To explain the stress and strain behavior of 
rocks, especially petroleum reservoir rocks, which 
are generally carbonate or clayey and sandy, it is 
essential to establish a relationship between the 
plastic volumetric strain rate and the plastic 
differential strain rate. This connection is called 
the law of dilation [21]. 

According to this law, in modeling the behavior 
of clay and sand, the relationship must describe 
well the behavior of these two types of rocks 
during loading. 

The law of general dilatancy rule is obtained 
according to the following equation [22]: 

0 ( )
p

crp

q cr

d d
d M e

d M

 


    (40) 

In the above equation d represents dilation, 
𝑑𝜀𝜈

𝑝
 increases the plastic volumetric strain, 𝑑𝜀𝑞

𝑝
 

increases the plastic differential strain, 𝑑0 and 𝛽 
the parameters of material and 𝜂 determine the 
stress ratio. 

To better show the plastic behavior of the rock, 
in the proposed model, the direction of the plastic 
strain vector is determined by the vector 
perpendicular to the surface of the plastic 
potential. This function, known as the plastic 
potential function, is obtained by integrating the 
following equation: 

01
0 0

0

( ) (1 ( )) )

1

cr

d

M

cr

d e pq
Q

dp p

M






  
 



 

(41) 

Where 𝑝0
́    determines the size of the plastic 

potential surface. 
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But an important part in the plastic model used 
in the advanced model is the incoherent flow law 
in modeling the plastic deformations. According to 
the definition of this law, which states that the 
direction of the plastic strain vector is in the same 
direction as the vector perpendicular to the plastic 
potential surface, the following relationship is 
considered: 

 

.p

Q
d

d d m
Q


 





 




 
(42) 

 

Where 𝑚 =
𝑑𝜆 

𝜕𝑄

𝜕𝜎

‖
𝜕𝑄

𝜕𝜎
‖

⁄   specifies the unit 

vector perpendicular to the plastic potential 
surface and the direction of the plastic strain 
vector is determined by this vector. d𝜆 is the 
plastic coefficient [21]. Also, the rate of increase in 
plastic strain of volumetric and differential 
components is obtained using the following 
equations: 

.p

p

Q
d

p
d d m

Q



 






 





 
(43) 

.p

q q

Q
d

q
d d m

Q



 






 





 
(44) 

 

2.4. Determining the elastic state or plastic  

In the continuation of the modeling process 
and when the deformation is entered into the 
model, it is time to model the loading space and 
determine the type of deformation of the rock 
based on the amount of stress. At this time, in each 
loading step, the stress state is calculated as 
follows, assuming that the strains are elastic: 

1 1

Trial e

n n nD d    
 

(45) 

 
In this equation,𝜎𝑇𝑟𝑖𝑎𝑙  specifies the elastic state 

stress, n and n+1 represent the previous step and 
the current step, and De represents the material 
elastic parameter matrix. During this process, the 
behavior of material assumed elastic and the other 
state variables remain constant and equal to their 
previous state. In the continuation of the process, 
the amount of elastic stress state and other 

variables are corrected in the plastic correction 
process [19]. 

But when the stresses exceed, a plastic 
correction process occurs. At this time, the 
amount of elastic stress specified in the previous 
process, the law of flow, the law of stiffness and the 
changes in the size of the surfaces are corrected in 
the way of implementing the compatibility 

conditions. 
The following equations will be involved in this 

process. 
Equilibrium equation: 

The necessary condition in this equation is always 
the state of stress. This means that the amount of 

stress must implement the balance. 

e ed D d   (46) 

By integrating in different steps from the above 
equation and placing it in equation (45), the 
following equation is obtained: 

1 1 1

Trial e p

n n nD d     
 

(47) 

To form the plastic strains, the following 
relation must be established:  

, ( ) 0 0p pd U d d    
 

(48) 

 
So, by implicit integral numericalization of this 

equation we have: 

1 1ln( )n n nu d     
 

(49) 

 
After that and by satisfying the compatibility 

conditions and the law of isotropic hardening, the 
system of nonlinear equations is formed, which 
Newton-Raphson iteration method is used to 
solve. After solving the output of the elastic model, 
it is returned to the model in the form of force to 
be compared with the amount of stress resulting 
from the solution of the mass equation and 
returned to the equilibrium equation and these 
two series of equations converge. 

2.5. The interaction of fluid and solid phases 

In previous sections, it is stated that there are 
two main solutions to solve the issue of 
interaction. One explicit solution and the other 
two-sided iterative solution. For the base model as 
well as the elastic model of the plastic used to 
upgrade the base model, the repeated two-way 
solution method has been used. This method is 
used to create and solve the interaction between 
the structure of the multidimensional finite 
volume method for the fluid phase as well as the 
finite element method that models the solid phase. 
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To do this, the system of fluid and solid equations 
are connected to a Newton-Raphson iteration 
loop. For the input of the finite element method, 
constant multiscale pressure is used to obtain the 
deformations, which are applied in the finite 
element cell space. The number of degrees of 
freedom of the constituent cells is 2. But as 
mentioned, the method used for the interaction is 
repetitive. As a result, for the convergence of the 
equations, the calculated pressure must be 
returned to the calculation cycle for convergence 
to occur. The method of operation is such that at 
the beginning and after each time step in the first 
stage, the phase mobility is checked. It should be 
noted that this feature is affected by changes in 
saturation. After checking this value and if the 
phase mobility is more than its allowable limit, the 
basic functions are recalculated and updated. If 
the phase mobility is within the allowable range, 
the problem enters the entanglement loop of the 
other two phases, i.e., liquid and solid. This loop is 
where the pressure correction function is 
calculated and the pressure-dependent values are 
updated. As a result, these functions are updated 
based on pressure. After this operation and 
extraction of the main functions from the relations 
(17) and (18) of the system of equations are 
formed and the matrix of coefficients and vectors 
to the right of the equation is formed. To solve the 
problem, large-scale pressures are extracted and 
then using equation (19) the microscale pressures 
are obtained. At this stage, a limitation is 
considered to check that the microscale pressure 
is not exceeded in two consecutive steps. If this 
difference does not exceed the set limit, the 
pressure equation is solved based on microscale 
pressures. But this is where the elasto-plastic 
model comes into play. In this way, the output of 
the equation is the mass of pressure, as stated, 
after passing the mentioned conditions, it enters 
the equation of equilibrium and outputs the 
deformations. The output of the equilibrium 
equation is the phase deformation of the solid 
zone. In the basic model, this deformation was 
returned to the mass equation to converge. But at 
this stage, the output deformation of the 
equilibrium equation enters the elastic model. It 
should be noted that at this stage the output 
deformations of this equation are elastic and 
strain stress calculations have not yet been 
performed on them. Also, the plastic strain system 
and the model are used. It is a control strain model 
and uses the strain input to perform calculations. 
The output deformation of the equilibrium 
equation enters the elastic program and the 
program gives it as output stress. In this step, it is 
determined whether, with the calculated stress, 
the deformation remains in the elastic range or 

enters the plastic-elastic or even plastic stage. 
Under the elasto-plastic program, it is first 
determined whether the input of the given model 
has been drained or not. It then calculates the 
output stress using the potential and new and 
integrated yield function. For convergence, as 
mentioned, the Newton-Raphson ring is also used 
in this program. It should also be noted that this 
program also uses the concept of effective tension. 
Using the condition of the yield function and 
checking the yield level, whether or not to cross 
the elastic range, the system of equations is 
formed and solved by the two-way iterative 
method and the Newton-Raphson loop. The 
output voltage is also converted to force and is the 
output of the program. It should be noted that the 
structure of the program performance is such that 
the initial calculations in the base program are 
based on the elastic state. The output of these 
calculations as the input of the elastic model 

creates an unbalanced force. 
In this step, the difference of the obtained force 

is obtained from the elastic force calculated by 
solving the mass equation. Newton Raphson is 
also used in this stage. This force difference, as the 
right-hand side of the force, refers to the 
equilibrium equation. But the point is that this 
force is no longer based on elasticity and may be 
elastic in the plastic or the plastic range. After the 
force is returned to the equilibrium equation and 
the iterative solution is solved, the output of the 
equilibrium equation, which was the deformation 
and subsequent volumetric strains, is obtained 
based on the new applied force. The resulting 
deformations and strains are then returned to the 
mass equation and the cycle is repeated. It should 
be noted that Newton Raphson was also used at 
this stage. In other words, the three sets of 
equations must be cross-sectionally converged 
with each other. Following the continuation of this 
process, the deformations are obtained based on 
the elasticity of the plastic or plastic, and the 
interaction of the liquid and solid phases is 
completed. After convergence of the obtained 
pressures, the flux due to the resulting pressure is 
applied to the boundaries of each sub-zone, and a 
stable pressure is obtained. This step is necessary 
for mass stability to solve the transfer equation. 
Finally, after extracting the constant pressures, 
the degree of saturation of the fluid phases is 
determined. And the degree of saturation equation 
is solved. In addition to the above, physical 
properties such as porosity are constantly 
updated. In this regard, using the solid phase mass 
survival equation: 

0(1 (1 )exp )vol     
 (50) 
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Table 1. Model algorithm, main time steps and iteration 
loop 

EM3GM Pseudo Code 

Start simulation 

n = 1 
do 

loop       I: time step 

      𝒗𝒄 = 𝟏, 𝒑𝒗𝒄 = 𝒑𝒏 

      do 
loop            II: Newton coupler repeating loop 

                   𝒗𝒑 = 𝟏: 𝒑𝒗𝒑 = 𝒑𝒗𝒄 

           do 

loop      III: repeat for pressure 

Update correction functions 
Solve the linearized equation of pressure 
                ⇒ 𝒑𝒗𝒑+𝟏 

                       𝒗𝒑 = 𝒗𝒑 + 𝟏 

until (Convergence of the nonlinear pressure 
equation) 

           CASM Model 
Investigation of elastic or plastic stresses 

Solve the system of nonlinear equations 

Volumetric strain calculation and porosity 
update 

Updating stress and pressure in equation 

    𝒑𝒗𝒄+𝟏 = 𝒑𝒗𝒑 
until (Convergence of pressure equations and 

geomechanics) 

a constant flux applied 
Solve the transfer equation 
  𝑺𝜶

𝒏+𝟏 = 𝑺𝜶
𝒏 

(end of the simulation) until 
 

 

3. PLAIN STRAIN SUBSIDENCE 

Geoengineering applications have a real 
challenge in modeling land subsidence caused by 
shortage of reservoirs. For the sake of this 
numerical experiment, we assume that the 
subsurface is a heterogeneous porous media with 
varying elastic effects along the z-axis. This 
hypothesis shows that given plane strain, 
circumstances a 3D issue may be reduced to a 2D 
problem. The dynamics of fluid flow inside the 
reservoir are not simulated since the focus of this 
work is on simulating the mechanical deformation 
in response to total reservoir depletion. This study 
is based on the Sokolova et al. article which they 
published in 2019 [6]. 

The producing reservoir is 1000 meters deep, 
1200 meters wide, and 120 meters thick. Within a 
10 km radius, mechanical deformation is modeled 
at distances of 3 km in both the y and x directions. 
Assuming a normal fluid angle of 0.1 bar/m, an 
initial reservoir pressure of 100 bar corresponds 
to a properly pressured formation at the depth 
under discussion. The distribution of young's 
modulus in the subsurface for one-dimensional 
vertical compressibility, manifested in the 
northern Adriatic sedimentary basin, is 
determined using a constitutive model. In this 
approach, the total vertical stress y' and 

hydrostatic pressure are superimposed to give the 
vertical effective stress, which is then estimated as 
the vertical uniaxial compressibility CM. The 
Poisson ratio ν=0.3 was constant on the whole 
part of the model. Thus, Young’s modulus can be 
calculated implicitly as a function of depth. 

While the north boundary is traction-free, the 
west, east, and south edges of the domain are 
subject to roller constraints. 450×225 elements 
discretize the computational domain at the fine 
scale with a 22.2 ×13.3 m2 fine cell size. In order to 
keep the system in equilibrium at initial reservoir 
conditions, the initial reservoir pressure is added 
as a source term for mechanical equilibrium in 

agreement with
( : )s

drC u bpl f   
, where f=0. 

Ultimately, the reservoir is considered to be fully 
depleted, thus, the overall pressure drops p =100 
bar. 

The multiscale solution is obtained with 
coarsening ratio of 9×9 fine-scale displacement 
elements per course, resulting in 51×26 coarse 
displacement nodes against 451×226 nodes on the 
fine-scale. Fig.3 shows the comparison of the 
reference fine-scale and multiscale solutions. The 
error of land subsidence estimation is accessed 
relative to the fully resolved fine-scale solution as 
shown in the equation below. 

 

 

1,2,...,

1,2,...,

ref i

h
ref

x x

ref h

h x
ref h

x x i N

x i N








 
 



 
(51) 

For the chosen coarsening ratio, mean error 
does not exceed 5.3%. Overall, the quality of 
multiscale solution is satisfactory. This model was 
totally fit into the model of Skolova et al. and it 
means that these two models work properly. 

 

Fig. 3. Comparison of the reference fine-scale (FV) solution 
in a simple strain subsidence test scenario and the 
multiscale solution obtained using the EM3GMSR 
(Enhanced Mixed Multiscale Multiphysics Geomechanical 
Model with Surrounded Rock) technique (dashed red line) 
(solid blue line). The fine-scale grid has 450×225 
displacement elements compared to the 50 ×25 elements 
in the coarse-scale mesh of the EM3GMSR. 
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4. WATER INJECTION IN THE POROUS MEDIUM 
WITH THE SURROUNDING ROCK LAYERS 

The environment around the reservoir will 
affect its performance. Therefore, in this section, 
to determine how and to what extent this affects, 
the problem of injection in a homogeneous 
deformable porous medium, which was evaluated 
in Section 4-5, will be re-examined and this time 
the effect of the surrounding environment will be 
taken into account, assuming that on the right and 
left sides of the bounding reservoir, an area ten 
times the length of the reservoir has been 
provided to consider its effect on the reshaping of 
the reservoir. At the top of the reservoir, the height 
of the rock layers equal to 100 meters has been 
selected. Figure 4 shows the intended reservoir 
with the surrounding rock layers. Points A, B, and 
C are in coordinates (825), respectively. The 
stiffness of the springs is obtained by applying a 
single force and dividing it by the deformation 
obtained in each node. To evaluate how the 
environment around the reservoir affects, the 
modulus of elasticity of the rock around the 
reservoir, 2.5 GPa has been considered. Figure 5 
shows the production rate in various non-
deformable modes, with deformation without 
effect of M3GM environment and with deformation 
with effect of M3GMSR environment with elastic 
modulus of surrounding rocks. 

As can be seen from Figure 5, the harvest rate 
is much higher regardless of the reservoir 
deformation, especially at the beginning of the 
harvest. Higher harvest rates are due to not 
considering the part of injection energy that is 
consumed by the deformation of the porous 
medium. For this reason, after the injection time, 
it reaches the state of provides equal to other 
cases. Of course, it should be noted that in both 
M3GM and M3GMSR models, the relationship of 
displacement stress is considered linearly elastic. 
If the stress-strain relationship is considered 
expensive and plastic based on the properties of 
the reservoir material, this process will continue 
until the end of the injection. Because even if the 
stress remains constant, the reservoir will deform 
and still part of the energy will be spent on 
deforming the porous environment and will be 
consumed. The amount of energy used to deform 
the solid phase due to the stress-strain curves of 
the reservoir material will probably be much 
higher than the elastic value. Also, as shown in 
Figure 5, the environment around the reservoir 
will have a significant effect on the harvest rate. In 
a similar way, the more the environment around 
the reservoir is firmer and has rocks with a higher 
modulus of elasticity, the lower the energy 
consumption and the higher harvest rate. For a 

more detailed study, three points in reservoir 
environment, which are shown with the letters A, 
B, C in Figure 4, are considered. The pressure 
history at these three points for the various modes 
is shown in Figure 6. As can be seen from the 
figure, the pressure at point A, which is closer to 
the injection site, is further increased. Also, the 
pressure in other parts of the reservoir is lower 
than the rigid state in cases of deformation of the 
porous medium. In fact, considering the 
deformation of the porous medium, the injection 
pressure is not completely applied to the fluid and 
part of it causes the deformation of the solid phase 
and will be consumed. 

 

 
Fig. 4. Reservoir considering the surrounding rock 

layer. 

 

 

Fig. 5. Reservoir withdrawal rates in different modes. 
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 Fig. 6. Pressure history at the point of A, B, and C, 
respectively. 

 
5. CONCLUSION 
 

The rock deformations in the reservoir play an 
important role not only for subsidence or heave 
aspects, but also, with respect to the production 
rate. In this regard, an Enhanced Mixed Multi-
scale, Multi-physical Geomechanical model was 
advocated in this study. The multiscale finite 
volume framework for the fluid flow is combined 
with the finite element for the rock deformation.  
Considering each phase in the domain of influence 
has computational privilege. Moreover, plastic 
deformation through bounding plasticity is also 
taken into account in order to obtain a better rock 
behavior prediction. So, in this research: 

- Fluids and rocks are simulated through 

separate frameworks. 

- The plastic deformation through 

bounding plasticity is incorporated. 

- The surround rock interaction is 

simulated with the aid of virtual spring 

and reasonable agreement with the fine 

scale simulation is achieved. 

- It is observed from the simulation that 

considering rock plastic deformation will 

result the lower production rate with 

respect to more energy loss during plastic 

deformation.  

It is revealed by this research that not only will 
be decreasing the computational cost by the 
multiscale modeling, but also, reasonable 
agreement with the fine scale solution could be 
verified. It is suggested that the extended finite 
element could be combined by multiscale 
framework in order to simulate fault and 
discontinuity in the fractured rock.  
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Appendix: Signs and abbreviations 

The symbol definition The symbol definition 

kr𝜶 Relative phase permeability   

�̇�𝜶 Fountains and phase wells 𝑑𝜆 
The plastic-shaped coefficient 
in the law of flow 

𝑵𝒖 Shape function 𝑄 plastic potential function 

A Area of micro-scale cells 𝜀𝑣 Volumetric strain 

𝑩𝜶 
Phase volumetric formation 
coefficient 𝑀 Critical mode line slope 

𝑪𝒄 Compressibility coefficient 𝑁 
Specifies the shape of the 
yield surface 

𝑫𝒆 Elastic matrix 𝑅 
Adjusting the point of 
collision of the critical mode 
line with the yield surface 

𝑫𝒆𝒑 Elasto plastic matrix 𝒅𝜺𝒗
𝒑

 
plastic volumetric strain 
changes 

E Elastic modulus 𝑝′ Average effective stress 

  𝛾 Convergence range 

𝑲 Absolute permeability matrix 𝜀 Solid phase strain vector 

�̃�𝒉 
Unit vector perpendicular to 
the surface 𝜌𝛼 Density of fluid phases 

𝑝 Fluid Pressure 𝛷𝑘
ℎ Matrix of basic functions 

𝑝′ unstable microscale pressure 𝛷ℎ  Correction function matrix 

  𝛺𝑘 Coarse gride cell vector 

𝑝𝑓 Microscale analysis pressure 𝛺ℎ Auxiliary cell vector 

𝑺𝜶 Phase saturation degree 𝜙 Porosity 

𝒖 Solid phase deformation 
vector 𝜐 

Poisson solid phase 
coefficient 

𝒗𝜶 Fluid phase velocity 𝑾𝒖
𝒕  

Vector of the weight 
coefficients of the zone 

dε^p Pastry strain change vector �̄�𝒖
𝒕  

Vector weight weights of 
borders 

  𝒅𝜺 Vector of total strain changes 

  𝒗𝒔 Solid phase velocity 

    

  𝝀𝛼 Fluid phase mobility matrix 

 


