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Keywords 
  Abstract 

The induced polarization (IP) response in media containing clay 
and/or metallic minerals has been modeled in different research. 
Increasing the IP applications and measurements has revealed 
these models’ limitations. For instance, no model has described IP 
response in the media with metallic minerals higher than 22 
percent. So, our goal in this contribution is to explain the IP response 
of clay-rich samples containing low- to high-grade pyrite, galena, 

and sphalerite from the Zn-Pb sedimentary-exhalative mine Koushk, central Iran. The samples’ background 
consists of clayey/micaceous minerals, including illite, muscovite, and chlorite, that, along with the metallic 
minerals, make the consecutive layers in some samples, while others have a different formation. The 
samples also contain some insulating grains such as quartz and gypsum. Therefore, there are different 
conduction and polarization mechanisms in them. These properties make our samples unique and 
substantial to study the IP response. To do this, we measured the samples’ complex conductivity, density, 
porosity, cation exchange capacity (CEC), and metallic/non-metallic minerals. Then, we investigated the 
relationship between electrical and petrophysical properties. The results showed that the chargeability 
has no relationship with CEC and is a complete representation of the metallic minerals’ polarization. The 
normalized chargeability depends linearly on the quadrature conductivity and is affected by the metallic 
minerals besides CEC. The content and type of clay/mica minerals control the CEC. Hence, the normalized 
chargeability is influenced by the metallic and non-metallic polarizable components. The conductivity 
linearly relates to metallic minerals’ content and, in vein mineralizations, has higher values than 
disseminated ones. Ultimately, comparing our samples’ IP response with Revil et al.’s and Pelton et al.’s 
models for chargeability, metallic minerals volume content, and time constant determined that increasing 
the metallic minerals makes the chargeability decrease and the time constant increase. So, in high-grade 
porous media or non-dispersive formations, chargeability is a function of the metallic minerals’ volume 
content and the time constant. Complex media like our samples are expected in geological environments. 
Hence, recognizing the parameters affecting IP response in these media helps to better understand their 
properties and, in general, IP response characteristics. 
 

Black Shales 

Chargeability 

Time Constant 

High-Grade 

Sulfides 

1. INTRODUCTION 

The non-invasive geophysical induced 
polarization (IP) method is the science of studying 
reversible charge carriers around grains in porous 

media. Based on the strong IP response of metal 
particles, the method has been used in the mining 
industry for metallic deposit exploration [1-5]. IP 
is also utilized widely in environmental studies 
such as contaminant delineation [6-8], 
contaminant remediation monitoring [9-12], 
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bioremediation of contaminants [13-14], 
monitoring of tailing dams and mine drainage [15-
16], long-term storage of nuclear wastes [17], 
likewise, geothermal and volcanology studies [18-
20], cement improvement [21-23], geotechnical 

investigations [24], hydrocarbon exploration [25-
28], petrophysical studies [29-38], identifying of 
clays properties [39-41], and hydrogeophysics 
[42,43]. 

Many IP models have been constructed so far 
to understand better the parameters affecting the 
IP response, such as [44-68]. Amidst, the 
relationship between metallic minerals content 
and IP response has been researched since the 
innovation of the IP method by Schlumberger in 
1920 [69]. This research focused on the 
relationship between the magnitude of IP 
response and petrophysical properties in the 
disseminated or the low volume content (mainly 
less than 16%, e.g., [49]) materials. As a result, 
Revil et al. (2015a) disclosed the first quantitative 
model that relates the chargeability and volume 
content of metallic minerals for disseminated 
mineralization with a grade of up to 22% [66]. 
However, the proposed IP models do not 
appropriately fit the experimental data in high-
grade non-disseminated mineralization. In other 
words, to our knowledge, there is no model to 
describe the IP response in media with metallic 
minerals content higher than 22 %. So, in the 
present article, we will study the electrical 
responses in high-grade dispersed to layered 
samples. In particular, we will focus on the 
relationship between the samples’ chargeability 
and metallic mineral volume content. 

To achieve this, we collected mineralized clay-
rich dark shale samples from Zn-Pb mine Koushk 
(K-samples), central Iran. Then, complex 
conductivity measurements were conducted on 
them in the frequency range of 10 millihertz 
(mHz) to 45 kilohertz (kHz) in pore-water 
conductivity of 0.36 S/m. Afterward, the IP 
parameters, including in-phase and quadrature 
conductivities at specific frequencies, 
chargeability, normalized chargeability, time 
constant, and conductivity itself, were extracted 
from the raw data. Meanwhile, metallic (including 
pyrite, galena, and sphalerite) and non-metallic 
minerals (e.g., clays, micas, and organic matter) 
content were determined by the semi-quantitative 
X-ray diffraction (XRD) method. Also, the thin and 
polished sections of the samples were prepared 
and studied. The K-samples’ porosity, density, and 

cation exchange capacity (CEC) were measured, as 
well. Eventually, we analyzed the relationship 
between the petrophysical quantities and IP 
parameters. 

2. THE STUDY AREA 

The Koushk Zn-Pb mine is one of the largest 
sedimentary-exhalative (SEDEX) deposits in the 
Zarigan-Chahmir basin, central Iran [70-71] (Fig. 
1). The deposit is located about 167 km east of the 
city of Yazd at 31°40'N and 55°40'E. 

According to the lithologic characteristics, 
there are two sequences of rock units in the mine 
area, including the mine and volcano-sedimentary 
sequences. The mine sequence consists of 
rhyolites, calcareous sandstone, silt, barren and 
mineralized black shale, limestone, and dolomite. 
The volcano-sedimentary sequence includes 
volcanic tuffs, limestone, dolomite, 
microconglomerate, and two hematite horizons. 
The age of black shale, the main rock unit in the 
area and host to the ore minerals, is upper 
proterozoic. This unit has very fine laminations. 
Quartz grains, clay minerals, and organic matter 
are also observed in the unit [72]. 

The ore minerals in the mine include sphalerite 
(ZnS), galena (PbS), and melnicovite (a mixture of 
marcasite (FeS2) and pyrite (FeS2)). The gangue 
minerals are pyrite, quartz, calcite, dolomite, 
gypsum, anhydrite, and clays. Variscite, a green 
mineral of hydrated aluminum phosphate 
(AlPO4.2H2O), is also reported in the deposit. 
Minerals in the Koushk mine have a variety of 
structures and textures, including laminated, 
disseminated, massive type, brecciated, 
frameboidal, and botryoidal [72]. 

Pyrite and galena, among other minerals, were 
crystallized in more than one crystallization stage. 
In the first stage, euhedral-shaped pyrite was 
formed, common in the shale but less common in 
the mineralized zones. Xenomorphic pyrites in 
spherical shape were produced in the second 
stage. Pyrite with a skeletal texture is the result of 
the third stage. The size of pyrite grains varies 
from a few microns to a few millimeters [72]. 

Euhedral and xenomorphic galena have 
appeared in the first and second stages of galena 
crystallization, respectively. Galena 
mineralization has followed the sphalerite 
mineralization [72]. 

The main alterations in the Koushk deposit are 
carbonatization and sericitization [73]. 
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Fig. 1. A simplified geological map of the Zarigan–Chahmir basin that shows the location of SEDEX deposits within the basin. 
KbF, Kuhbanan Fault; KF, Kalmard Fault; NF, Naeini Fault; PF, Posht-e-Badam Fault [73]. 

 

3. METHODOLOGY 

The eight samples of this study, i.e., K6, K12, 
K17, K18, K19, K20, K23, and K26, are shown in 
Fig. 2. We wrote the minerals’ names that can be 
seen in the macroscopic view in this figure. Also, 
we drew the white dashed lines as guides to the 
eyes to separate the clay/mica and metallic layers. 
The lengths of the samples are between 6.8 and 
12.4 cm. The samples K6 and K19 were 
unintentionally broken into two pieces before the 
complex conductivity measurements. However, 
we used one part of each sample for the 
measurements (i.e., K6a and K19b, considered K6 
and K19 in the following). All the samples have a 
layered structure besides the disseminated one. 
The samples K20 and K26 differ from the others 
(Fig. 2). 

3.1. Chemical Analyses 

The metallic minerals weight content of the 
samples was determined via the semi-quantitative 
XRD method. Then, we computed the volume 
content of metallic minerals in each sample 
utilizing the metallic minerals' weight content, 

densities of the metallic minerals, and total sample 
density (Table 1). Accordingly, the metallic 
minerals volume content of the samples varies 
between 0.062 and 0.533. 

The weight percentage of clay/mica minerals 
in the samples, including muscovite, illite, and 
chlorite, was also obtained through the semi-
quantitative XRD method (Table 1). 

The highest values of clayey and micaceous 
minerals belong to K6, K18, K12, K17, and K23 (26 
to 17 percent). The lowest values of these sheet 
minerals are observed in K26, K20, and K19 (zero 
to 9 percent). 

The main mineral in sample K26 is variscite 
(80 percent, as seen in Table 1). 

K-samples’ organic matter was calculated 
using the Loss of ignition (L.O.I.) method from [74] 
(see also [75-76]). Accordingly, the organic matter 
of the samples varies from 0 to 0.282 % (Table 1). 

3.2. Other Characteristics Of The Samples 

We reported the density, porosity, and CEC of the 

samples in Table 2. The samples were saturated 
with a low-salinity NaCl solution in a vacuum 
chamber for 24 hours to measure the porosity. 
Then, the water content was reduced to the 
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porosity (see, for instance, [77]). The density was 
determined by measuring the samples dry and 
water-saturated weights and volumes. 

CEC was determined by using a hexammine 
cobalt (III) chloride solution from the Ciesielski 
and Sterckeman (1997) method [78]. We reported 
CEC in the traditional unit meq/100gr (= 963.20 
C/kg in S.I. units). 

CEC corresponds to the exchangeable cations 
on the surface of the clay minerals per unit mass 
of minerals [77]. In other words, CEC represents 
the total amount of cations that can be sorbed on 
the surface of clay minerals [79]. Cobalt ions can 
be intensely exchanged with the surface reactive 
cations of clay minerals. Accordingly, each sample 
was crushed and sieved in our measurements to 
achieve a size fraction between 150 and 425 μm. 
Then, fine-grain clays were added to a 0.05 N 
hexammine cobalt solution with an orange color. 

As a result, the color of the solution got weaker 
due to the sorption of cobalt ions on the surface of 
clay minerals. This color reduction obtains the 
hexammine cobalt (III) chloride quantity used in 
the sorption procedure. The difference in cobalt 
ions concentration of the solution before and after 
contact with clay minerals was measured through 
absorbance measurements with a calibrated 
spectrophotometer. The difference determines 
the concentration of exchangeable cations of clay 
minerals, i.e., CEC [18,80-81]. The importance of 
CEC in geophysics is to obtain the surface 
conductivity of clay minerals by using their CEC. 

Based on these methods, samples K18 and K20 
contain the highest and lowest porosity values. 
K20 and K23 have the most and the least density. 
The highest and lowest values of CEC belong to 
K23 and K26. 

   

 
Fig. 2. Picture of eight (without K6b and K19a (see the main text)) mineralized dark clay rock samples from Zn-Pb Koushk 
mine. The samples have a relatively low porosity. Metallic minerals are found as interlayers within the shale background. All 
the samples have a layered structure besides the disseminated one. K20 and K26 differ from the others. White areas in K20 
consist of gypsum. Green particles in K26 are Variscite. White dashed lines highlight the traces of shale and metallic layers. 
Shale (sh), organic matter (om), gypsum (g), pyrite (py), galena (ga), sphalerite (sph), and variscite are annotated. 
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Table 1. The metallic and non-metallic minerals in K-samples. The metallic minerals' weight content was determined using the semi-

quantitative XRD method. The metallic minerals' volume content is calculated by the metallic minerals' weight content, densities of 

metallic minerals, and total sample density. We displayed the lack of sphalerite, galena, and variscite in some samples with a star (*). 

Organic matter in K12, K17, and K23 is undefined due to the inadequate amount of these samples. 

Sample K6 K12 K17 K18 K19 K20 K23 K26 

Weight 
content 

Sphalerite (%) 11 5 2 1 * 24 17 6 

Pyrite (%) 15 21 27 13 57 16 4 3 

Galena (%) * * * * * 21 2 * 

Metallic minerals (%) 26 26 29 14 57 61 23 9 

Volume 
content 

Sphalerite (%) 8.003 3.411 1.385 0.667 * 26.426 10.316 4.424 

Pyrite (%) 8.940 11.737 15.321 7.098 42.636 14.432 1.988 1.812 

Galena (%) * * * * * 12.462 0.654 * 

Metallic minerals (%) 16.943 15.148 16.707 7.765 42.636 53.320 12.959 6.236 

Metallic minerals (-) 0.169 0.151 0.167 0.078 0.426 0.533 0.130 0.062 

Clay/ 
mica 

Muscovite, Illite (%) 22 18 17 21 5 1 17 0 

Chlorite (%) 4 3 3 5 4 1 0 0 

Organic matter (%) 0.025 undefined undefined 0.056 0.008 0 undefined 0.282 

Variscite (%) * * * * * * * 80 

 
 

Table 2. Characteristics of the K-samples. The density was 
determined by measuring the samples’ dry and water-
saturated weights and volumes. The porosity was 
computed thanks to the water content of the samples. CEC, 
in meq/100 gr (= 963.20 C/kg), was calculated by the 
hexammine cobalt method. 

Sample 
Density 
(g/cm3) 

Porosity (-) 
CEC 

(meq/100gr) 

K6 2.98 0.04 5.54 

K12 2.79 0.03 9.62 

K17 2.84 0.03 8.30 

K18 2.73 0.09 11.80 

K19 3.74 0.06 4.4 

K20 4.51 0.02 2.55 

K23 2.49 0.06 13.70 

K26 3.02 0.07 1.45 

 

3.3. Mineralogical Studies 

We chose K6, K19, K20, and K26, two-layered 
and two non-layered K-samples, to observe the 
metallic and non-metallic minerals assemblage. 
Therefore, we prepared and analyzed the polished 
sections of K6, K19, K20, and K26 and the thin 
section of K6 in the thin section laboratory of Yazd 
University (Fig. 3). The results showed that K6 
consists of a layered structure of metallic and non-
metallic minerals, including pyrite, sphalerite, 
galena, gypsum, quartz, oriented sericite particles, 
shale, and organic matter. Sericite is the white 
micas with fine, ragged grains and aggregates 
commonly made from muscovite, illite, or 
paragonite. 

K19 includes pyrite in between the layers of 
non-metallic gangue. Pyrite, sphalerite, galena, 
and non-metallic gangue are observed in K20, 
which has no layered structure. Variscite, pyrite, 
and non-metallic gangue exist in K26. K26 has low 
metallic particles dispersed within the variscite 
background.

 

Fig. 3. The thin section of K6 and the polished sections of K6, K19, K20, and K26. K6 contains pyrite (Py), sphalerite (Sph), 
galena (Ga), gypsum, quartz, oriented sericite particles, shale (sh), and organic matter (om). K19 includes pyrite placed in 
non-metallic gangue. K20 consists of pyrite, sphalerite, galena, and non-metallic gangue. Variscite, pyrite, and non-metallic 
gangue exist in K26. The layered structure of metallic minerals and non-metallic gangue are apparent in K6 and K19. K20 
and K26 have different structures. 
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3.4. Complex Conductivity Measurements 

The complex electrical impedance 
measurements (Z*(ω)=│Z*(ω)│eiφ) were 
conducted using a four electrodes technique (see, 

for instance, [82-84]) and the high-precision 
impedance analyzer developed by Zimmermann 
et al. [84]. The four electrodes technique utilizes 
two superconductive carbon films as current 
electrodes (A and B), two non-polarizing Ag-AgCl 
Biomedical electrodes as voltage electrodes (M 
and N), and a sample holder. The current 
electrodes were placed at two reciprocal end faces 
of each sample. The voltage electrodes were 
placed on one side of the sample in the middle of 
the current electrodes. The current electrodes 
covered all the end faces of the sample. 
Conversely, the voltage electrodes had a small 
surface (see, for instance, [8,77,83,85]) (Fig. 4). 

The impedance amplitude (│Z*(ω)│ in Ω) and 
the phase angle (φ in rad) were measured at the 
frequency range from 10 mHz to 45 kHz. Then, the 
amplitude and the phase were used to calculate 
the in-phase (σ' in S/m) and quadrature (σ'' in 
S/m) conductivity (Fig. 5) through Eq. (1-8): 

 

Z*(ω)=Z'+iZ'', in Ω,      i=√-1 (1) 

Z'=Re(Z*(ω))=|Z*(ω)|cosφ, in Ω (2) 

Z''=Im(Z*(ω))=|Z*(ω)|sinφ, in Ω (3) 

G'= Z' |Z*(ω)|
2

⁄ , in S (4) 

G''= -Z'' |Z*(ω)|
2

⁄ , in S (5) 

σ'=G'k, in S/m (6) 

σ''=G''k, in S/m (7) 

k= MN
Samples'cross-sectional area,

 in 1/m
⁄  (8) 

where ω is the angular frequency in rad/s. The 
geometric factor (k) used in the calculations was 
different for the samples due to their different MN 
distance and samples’ cross-sectional area. The 
imposed injection voltage for the measurements 
was 1 V. 

The electrolyte conductivity in the 
measurements was 0.36 S/m. So that before the 
measurements, a brine was prepared with 
demineralized water and a high-grade dehydrated 
NaCl salt at 25°C. Then, the samples were put in a 
closed container for two weeks in the brine, and 
their conductivity was measured until it was 
stabilized. Then, the samples were removed from 
their containers for the measurements (see, for 
instance, [77]). 

The measurements were performed in four 
quadrupoles to study the IP response anisotropy. 
The current passes the sample parallel to the 
bedding plane of shale and metallic minerals in 
quadrupoles 1 and 2 and perpendicular to it in 
quadrupoles 3 and 4 (Fig. 4). We will discuss the 
IP response anisotropy in our future study. 
However, see [86] for the initial results. The 
present paper considers complex conductivity 
measurements in the case of quadrupole 3. This is 
because the number of IP parameters we could 
extract from in-phase and quadrature 
conductivity spectra in this quadrupole was more 
than in the others. 

 

 
 

Fig. 4. Four-electrode configurations on a cubic sample for the spectral induced polarization (SIP) measurements. The 
current (A, B) and voltage electrodes (M, N) were placed on the different sides of the samples. The current electrodes covered 
all the reciprocal end faces of each sample (light-gray planes), but the voltage electrodes had a small surface (small dark-gray 
planes). The current electrodes were superconductive carbon films. The voltage electrodes were non-polarizing Ag-AgCl 
Biomedical electrodes. Current passes the sample parallel to the bedding in quadrupoles 1 and 2 and perpendicular to it in 
quadrupoles 3 and 4. This paper finds measurements in the case of quadrupole 3.  
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4. THEORY 

The polarization phenomena studied using the 
IP method are described as a contribution of 
conductivity (σ). The conductivity is complex 
owing to polarization phenomena and frequency-
dependent due to relaxation processes [87]. 
Complex conductivity (σ*(ω) in S/m) is written as: 

σ*(ω)=( 1 kZ*(ω)⁄ )=|σ*(ω)|e-iφ 

           =σ'(ω)+iσ''(ω) 

(9) 

|σ*(ω)|=√(σ'(ω))2+(σ''(ω))2 (10) 

where |σ*(ω)| is the complex conductivity 

amplitude in S/m. The in-phase conductivity 
shows transporting the electric charge carriers, 
i.e., the perfect conduction. The quadrature 
conductivity corresponds to the reversible storage 
of electric charge carriers [18,88], i.e., the perfect 
polarization. The phase difference between the 
applied external electric field and the resultant 
voltage in the IP method is determined with: 

φ=arctan (σ''(ω) σ'(ω)⁄ ) (11) 

There are distinct polarization mechanisms in 
porous media containing polarizable metallic and 
non-metallic materials, like K-samples. 
Immediately after applying the external electric 
field, the charge carriers on the surface of the 
polarizable materials go into motion. This 
movement results in a maximum conductivity 
limit as high-frequency or instantaneous 
conductivity (σ=σ∞, in S/m). After a long-term 
applied external electric field, the opposite-sign 
charge carriers are separated in two sides of the 
polarizable grains. They cannot participate in the 
conductivity of the porous media as before. So, 
low-frequency or DC conductivity is formed 
(σ=σ0, in S/m). Chargeability (M, dimensionless) is 
calculated by the ratio of these conductivities [89]: 

M=(σ∞-σ0)/σ∞ (12) 

Normalized chargeability (in S/m) is given by 
[66,90]: 

Mn=Mσ∞=σ∞-σ0 (13) 

Revil et al. (2015a) have derived σ∞ and σ0 
using the Maxwell-Clausius-Massotti equation and 
the differential effective medium approach: 

σ∞=σb
* (1+3φ

m
) (14) 

σ0=σb
* (1-( 3 2⁄ )φ

m
) (15) 

where σb
* is the background conductivity 

containing polarizable materials and φ
m

 

(dimensionless) is the volumetric content of 
metallic minerals. 

Hence, the chargeability can be written in the 
following equation for metallic minerals volume 
content smaller than 22% of the whole materials, 
as exposed in [66,91]: 

M=( 9 2⁄ )φ
m

 (16) 

Metallic minerals refer to metals (such as lead, 
silver, and copper), semiconductors (such as 
pyrite and magnetite), and semi-metals (such as 
graphite) [19,82,92]. The metallic minerals in this 
paper denote the semiconductors, i.e., pyrite, 
galena, and sphalerite. The background material is 
part of the porous media composed of non-
metallic particles, like sand, clays, and pore water. 

When the background is polarizable, Eq. (16) is 
rewritten into [66]: 

M = ( 9 2)φ
m

+Mb⁄  (17) 

Mb is the background chargeability, less than 
10% [93-99]. 

The last IP parameter to introduce here is the 
main time constant (τ in s) that for the complex 
conductivity is written as [46,66]: 

τ= a2 D⁄  (18) 

where a is the radius of the metallic particles 
(in m), and D (m2/s) is the apparent diffusion 
coefficient of the charge carriers responsible for 
the polarization of the conductive particles. τ is 
determined from the peak frequency of the phase 
angle spectrum (τ= 1 2πfpeak⁄ ). 

We took the K-samples’ instantaneous 
conductivity, chargeability, and time constant 
from the double Cole-Cole model (Appendix A). 

5. RESULTS 

5.1. The Characteristics Of The Background 
Materials 

Fig. 5 represents the in-phase and quadrature 
conductivity spectra for K-samples. We fitted a 
double Cole-Cole model in conductivity form to 
the spectra to extract the Cole-Cole parameters of 
K-samples. Then, we reported the parameters, 
including σ∞, M, c, and τ in low- and high-
frequency in Table 3. Parameter c is the Cole-Cole 
exponent (dimensionless) and has a reverse 
relationship with the particle size distribution of 
the metallic particles. c, which varies between 0 
and 1, is the slope of the phase angle log-log 
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symmetric spectrum [100-101]. Samples K20 and 
K23 are not displayed/reported in Fig. 5 and Table 

3 because the Cole-Cole model did not fit well on 
their conductivity spectra. 

 

 
Fig. 5. K-samples’ in-phase and quadrature conductivity spectra (at a pore-water conductivity of 0.36 S/m). We eliminated 
the high-frequency part of the spectra (10-45 kHz), diminishing unintended errors. The lines represent the double Cole-Cole 
model in conductivity form. K20 and K23 are not displayed in this figure because the Cole-Cole model did not fit well on their 
spectra. 

 
Table 3. Double Cole-Cole parameters for K-samples. The parameters of K20 and K23 are not reported in this table because 

the Cole-Cole model did not fit well on their spectra. LF and HF state low- and high-frequency Cole-Cole parameters, 
respectively. 

Sample σ∞ (S/m) M1 (LF) M2 (HF) c1 (LF) c2 (HF) τ1 (LF) τ2 (HF) rms (%) 

K6 0.36944 0.41055 0.31510 0.47758 0.50197 0.1192850 0.0000973 0.28672 

K12 0.09789 0.05706 0.35430 0.73108 0.45174 0.0305207 0.0000202 0.57357 

K17 0.15571 0.59087 0.25697 0.33657 0.31178 0.6511714 0.0000105 0.35869 

K18 0.06947 0.19788 0.28719 0.39485 0.59009 0.0010632 0.0000043 0.28733 

K19 0.33673 0.55624 0.38001 0.42258 0.41021 0.0830001 0.0000935 0.22838 

K26 0.06380 0.09440 0.21260 0.38978 0.38777 0.6086066 0.0000236 0.14126 

As mentioned in the SIP literature, the highly 
accurate part of complex conductivity spectra is 
from 10 mHz to 1 kHz [62,84,102]. It is observed 
that the kHz range of SIP errors rises from the 
unintended capacitive coupling in the SIP 
measurement set [32,36,103-105], and mHz range 
errors are caused by electrochemical effects [65]. 
It is also observed that when the background 
conductivity is very high, SIP measurement error 
increases [106]. So, in the present study, we 
considered SIP data in the frequency range of 1 Hz 
to 1 kHz to eliminate the uncertainties in 
measurement data by very low and high 
frequencies. Moreover, to evaluate the precision of 
the measurements, we repeated them three times 
at each frequency and observed good repeatability 
in our measurements. 

The analyses show that there are various 
amounts of clayey and organic matter in K-
samples (Table 2). CEC is a parameter mostly 
related to the clay type (e.g., smectite, illite, 
kaolinite) and the clay minerals’ weight fraction 

[76,107]. In the same way, we observed a linear 
relationship between CEC and clay/mica weight 
fraction for our samples and data from the 
literature [10,108] (Fig. 6). 

 
Fig. 6. The linear relationship between CEC and clay/mica 
weight fraction for K-samples and data from the literature. 
K26 is not shown in this figure due to no clay/mica content. 
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We calculated the normalized chargeability for 
K-samples using the Cole-Cole model (M1σ∞) and 
for some literature from their reported values for 
instantaneous conductivity and chargeability (Eq. 
13). Then, we displayed the CEC versus the 
normalized chargeability and chargeability in Fig. 
7a and Fig. 7b, respectively. Accordingly, the 
normalized chargeability versus CEC can be fitted 
with a straight line, especially for the data from the 
literature (see [95,109-110] as well). Compared 
with the literature’s data, K-samples are rich in 
metallic minerals. So, we investigated the 
relationship between the normalized 
chargeability and the metallic minerals' volume 
content (Fig. 8). We found a good correlation 
between these two parameters. The normalized 
chargeability for K-samples with high-value 
metallic minerals is higher than the others. So, we 
can probably attribute the different K-samples’ 
CEC-normalized chargeability behavior in Fig. 7a 
to their higher metallic minerals content than the 
literature’s data. Such behavior has also been 
observed by Revil et al. (2018d). It seems these 
observations reveal that the normalized 
chargeability depends on the metallic minerals 
content besides the CEC (see also [96,98]). K12 
does not follow this concept (Figs. 7a and 8). We 
attribute it to a weaker Cole-Cole fit with more rms 
than the other K-samples (Table 3), causing its 
normalized chargeability to be a little problematic. 

Conversely, there is no relationship between 
chargeability and CEC (Fig. 7b). This implies that 
the factors controlling CEC, such as clay’s content 
and type, do not impact the chargeability. This 
result is substantial, particularly in our samples 
with different polarization mechanisms due to the 
simultaneous presence of clay/mica, metallic 
minerals, insulator grains, and pore water. 

The data shown in Fig. 9 exhibit a linear trend 
with a slope of 5.12 between the normalized 
chargeability and the quadrature conductivity 
(see also [79,85,92,109-111]). We determined the 
latter for the K-samples at the geometric mean 
frequency [111] of 10 Hz. So, the K-samples’ 
normalized chargeability is approximately five 
times higher than the quadrature conductivity. 
The literature’s data in Fig. 9 are the volcanic 
samples mainly containing clayey materials. 
Notably, the normalized chargeability is linearly 
connected to the quadrature conductivity in the 
samples with or without metallic content. The 
normalized chargeability and quadrature 
conductivity of K-samples are even higher than 
those for pure bentonite and pure kaolinite (95 
and 80 percent, respectively, from [112]). 

The linear relationship between the 
normalized chargeability and the quadrature 
conductivity emphasizes that the observations 

between the normalized chargeability and CEC are 
also valid for the quadrature conductivity [85] 
(Fig. 10). Hence, background polarizable 
materials, like clay/mica fraction, control the CEC, 
normalized chargeability, and quadrature 
conductivity [20,110]. The metallic content can 
also affect these two IP parameters. Nelson and 
Van Voorhis (1983) have also reported a direct 
correlation between the quadrature conductivity 
and the metallic minerals content [113]. 

The normalized chargeability as a conductivity 
function is presented for K-samples and data from 
the literature in Fig. 11. We calculated K-samples’ 
conductivity using in-phase and quadrature 
conductivity at 10 Hz (Eq. 10). Based on Eq. (17), 
the chargeability is considered under the control 
of the background chargeability and the metallic 
minerals' volume content. In turn, the background 
chargeability (Mb) can be obtained by Eq. (13) 

(Mb= Mn
b σ∞

b⁄ ). At low pore-water salinity, in which 
the surface conductivity dominates the pore-
water conductivity, the background chargeability 
has a maximum limit (R) of around 0.1. In this 
state, the overall conductivity of materials is 
defined by the surface conductivity (σ=σ∞

b =σs
∞) 

[77,79,90]. All minerals, including clays, organic 
matter, and semiconductors, have surface 
conductivity when in contact with water [88]. The 
K-samples have three conductivity mechanisms: 
electrolyte, surface, and semiconductor. The 
placement of K-samples above the line Mn=0.1σ in 
Fig. 11 shows that the surface conductivity is very 
high among these different mechanisms and is the 
dominant conductivity component in the K-
samples (see, for instance, [77,98]). We 
represented the smectite- and magnetite-rich 
samples from the literature [77,90] along with the 
lines Mn=0.4σ and Mn=0.6σ to compare with the 
K-samples location. The lines Mn=0.4σ and 
Mn=0.6σ were plotted following the highest 
amounts of K-samples chargeability, i.e., 0.59, 
0.56, and 0.41 for K17, K19, and K6, respectively. 
K-samples are located even higher than smectite-
rich soils. We believe these observations 
demonstrate the influence of the metallic minerals 
content on the conductivity (besides the 
normalized chargeability).  

So, we analyzed the relationship between the 
conductivity and the metallic minerals weight 
content either for K-samples or 
disseminated/vein mineralizations originating 
from [114] (redrawn from [113]) (Fig. 12). As is 
seen in Fig. 12, these two parameters are linearly 
related. K-samples also have high-value 
conductivity that is comparable with vein 
mineralization. Hence, the metallic minerals, 
besides the background conductive materials, are 
essential in increasing K-samples’ overall 
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conductivity. We can attribute this behavior to 
continuous paths formed by the K-samples 

metallic minerals content, allowing the electrical 
current to pass easily. 

 
Fig. 7. a) Normalized chargeability versus CEC. We calculated the K-samples’ normalized chargeability through the double 
Cole-Cole model (M1σ∞). K20 and K23 spectra did not fit well with the Cole-Cole model. We determined normalized 
chargeability for Abdulsamad et al. (2019) [107] by their reported values for chargeability and instantaneous conductivity. 
b) There is no relationship between the chargeability and CEC. Duvillard et al.’s data [118] have originated from [55,85,90]. 

 

 

Fig. 8. The linear relationship between the normalized 
chargeability and the metallic minerals volume content. 
We calculated the K-samples’ normalized chargeability 
through the double Cole-Cole model (M1σ∞). K20 and K23 
spectra did not fit well with the Cole-Cole model. We 
calculated the literature’s normalized chargeability by 
their reported values for chargeability and instantaneous 
conductivity. 

 

Fig. 9. The linear relationship between K-samples’ 
normalized chargeability and quadrature conductivity. 
We calculated the K-samples’ normalized chargeability 
through the double Cole-Cole model (M1σ∞) and their 
quadrature conductivity at 10 Hz (at a pore-water 
conductivity of 0.36 S/m). K20 and K23 spectra did not fit 
well with the Cole-Cole model. K-samples have normalized 
chargeability and quadrature conductivity higher than 
ones for pure bentonite and pure kaolinite (95 and 80 
percent, respectively). 
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Fig. 10. Quadrature conductivity versus CEC for the K-
samples and data from the literature. We took K-samples’ 
quadrature conductivity at 10 Hz (at a pore-water 
conductivity of 0.36 S/m). We did not display K20 and K23 
in this graph due to the lack of their quadrature 
conductivity at 10 Hz. 

 

 

Fig. 11. The linear relationship between the normalized 
chargeability and conductivity. We calculated K-samples’ 
normalized chargeability through the double Cole-Cole 
model (M1σ∞) and their conductivity from in-phase and 
quadrature conductivity at 10 Hz (at a pore-water 
conductivity of 0.36 S/m). K20 and K23 spectra did not fit 
well with the Cole-Cole model. The lines Mn=0.4σ and 
Mn=0.6σ were plotted following the highest amounts of K-
samples’ chargeability, i.e., 0.59, 0.56, and 0.41 for K17, 
K19, and K6, respectively. 

 

Fig. 12. The linear relationship between conductivity and 
metallic minerals weight content. We calculated K-
samples’ conductivity from in-phase and quadrature 
conductivity at 10 Hz (at a pore-water conductivity of 0.36 
S/m). We originate the vein and disseminated 
mineralization data from [114] and redrawn from [113]. 
We did not display K20 and K23 in this graph due to the 
lack of their quadrature conductivity at 10 Hz. 

5.2. Chargeability In High-Grade Non-
Disseminated Materials 

Based on Eq. (16-17), chargeability directly 
relates to (9 2)⁄ φ

m
 if the metallic minerals volume 

content of less than 22% [66]. In addition, there is 
the known diagram of Pelton et al. (1978), which 
depicts the relationship between M-φm-τ. K-
samples are significant because they contain low- 
to high-grade disseminated and non-disseminated 
ores. So, we had an excellent opportunity to 
analyze the M-φm relationship of our natural 
samples using Eq. (17) and Pelton et al.’s diagram. 
Therefore, we obtained the K-samples’ 
chargeability (M1 in Tables 3 and 4) and extracted 
the time-constant plots from Pelton et al.’s 
diagram. Then, we illustrated our samples along 
with the model of Eq. (17) and time constant plots 
in Fig. 13. We also showed the samples from [116] 
and [120] (Table 4) in this figure to gain a more 
extensive data set. Amongst the literature 
samples, the ones from [120] are the most similar 
to ours because they include low- to high-grade 
disseminated/veined/massive ores. 

According to Fig. 13, increasing the metallic 
volume content (>22%) decreases the 
chargeability and sesanrini the time constant (see 
also [1,2,5,41,68,113,114,121-122]). Declining 
chargeability is probably attributed to the 
decreasing inhomogeneity of the porous media 
following increasing metallic volume content. 
Approaching the high-grade samples to the plots 
with the high time constant is probably due to the 
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connection of metallic particles and making the 
larger particles with the higher time constant. 

In other words, there is not a good correlation 
between Eq. (17) and high-grade samples. So, the 
coefficients in Eq. (17) are not appropriate to 
approximate the metallic volume content in high-

grade mineralized rocks. Therefore, to access a 
better prediction of ore volume content based on 
chargeability measurements, especially in high-
grade materials, it is necessary to import the time 
constant parameter to the M-φm relationship. 

Table 4. Metallic minerals volume content and chargeability for K-samples and data from [116,120] are used in Fig. 13. We 
reported the geometry of the distribution (GoM) for the metallic minerals. We calculated the K-samples chargeability through 
the double Cole-Cole model. K20 and K23 spectra did not fit well with the Cole-Cole model. 

Ghorbani et al. (2018) [116] Fraser et al. (1964) [120] K-samples 

φm (-) M (-) GoM φm (-) M (-) GoM Sample φm (-) M1 (-) in Table 3 

0.000 0.05 DF 0.250 0.27 V, DL K6 0.169 0.41 

0.001 0.08 DF 0.570 0.7 DL,DF,V,M K12 0.151 0.06 

0.002 0.10 DF 0.400 0.45 DL,DF,V K17 0.167 0.59 

0.005 0.09 DF 0.650 0.67 DL,DF,V,M K18 0.078 0.20 

0.008 0.15 DF 0.250 0.48 DL,V,DF K19 0.426 0.56 

0.010 0.17 DF 0.020 0.11 DF K20 0.533  

0.021 0.16 DF 0.040 0.24 DF K23 0.130  

0.051 0.43 DF 0.050 0.2 DF K26 0.062 0.09 

0.082 0.43 DF 0.020 0.13 DF, V    

0.103 0.65 DF 0.015 0.09 DF, V    

0.154 0.89 DF 0.041 0.33 DF    

0.206 0.39 DF 0.068 0.35 DF    

0.257 0.57 DF 0.057 0.23 DF    

0.386 0.58 DF 0.878 0.86 DF, M    

   0.018 0.18 DF    

   0.051 0.1 DF    

   0.048 0.15 DF    

   0.013 0.11 DF    

The distribution of metallic minerals is indicated by the following symbols (based on [120]): 
V: Veined; DL: Disseminated large blebs; DF: Finely disseminated; M: Massive. 

 

 
Fig. 13. Chargeability and time constant as a function of 

metallic minerals volume content for K-samples and data from 

[116,120]. We extracted time constant plots from [1]. We 

determined K-samples’ chargeability through the double Cole-

Cole model and reported them in Tables 3 and 4. K20 and K23 

spectra did not fit well with the Cole-Cole model. 

6. CONCLUSION 

Black shales, as a host rock of sulfide minerals 
in SEDEX deposits like Koushk, are complex 
geological environments. Usually, the ores include 
polarizable pyrite and galena, along with 
sphalerite. The latter is possible to be polarized. 
They also contain different amounts of 
clayey/micaceous materials, organic matter, and 
insulator grains. In addition, the layered structure 
of sulfides and clays may cause the electrical 
parameters to be anisotropic. Therefore, different 
characteristics and polarization mechanisms in 
the environments make it challenging to interpret 
the IP response. Studies like this paper can help to 
understand these environments and their IP 
response better. 

So, we studied the complex conductivity for 
samples from Zn-Pb mine Koushk. Our 
observations showed that chargeability is not 
affected by CEC and is merely the indicator of the 
metallic particles volume content. Normalized 
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chargeability is an IP response affected by metallic 
particles content besides the CEC and, accordingly, 
the clays’ type and amount. Normalized 
chargeability and quadrature conductivity have a 
linear relationship in samples with or without 
metallic particles. These two parameters in the 
mineralized samples are higher than the others. 
Normalized chargeability linearly depends on 
overall conductivity that, in turn, is controlled by 
metallic particles volume content. There are 
different conductivity mechanisms in our samples, 
with surface conductivity as the dominant one. 
Afterward, increasing metallic grades decreases 
the chargeability and increases the time constant. 
Thus, using a model including chargeability and 
time constant can be suitable to approximate the 
metallic particles content from the induced 
polarization response. 
Acknowledgments 

We are grateful to Prof. André Revil and Dr. 
Antoin Coperey for helping to measure the 
complex conductivity data. Also, we thank Dr. 
Seyed Hossein Mojtahedzade, associate professor 
of mining engineering at Yazd University, En. 
Seyed Kazem MirDehqan and En. Mohammad 
Paydar, the laboratory expert at Yazd University, 
for preparing and studying our samples’ thin and 
polished sections. We also thank anonymous 
reviewers for their fruitful comments. 

Appendix A. Double Cole-Cole Model 
(Parameters and Inversion) 

To determine the polarization of the 
background (clay/mica) and the polarization of 
the sulfide minerals, we utilize a double Cole-Cole 
model in the conductivity form: 

σ*=σ∞(1-
M1

1+(iωτ1)
c1

-
M2

1+(iωτ2)
c2

) (A-1) 

where σ* is the complex conductivity,   

denotes the instantaneous conductivity, M1 and 
M2 are the chargeabilities related to low- and 
high-frequency polarization, ω is the angular 
frequency, τ1 and τ2 are the time constants, and c1 
and c2 denote the Cole-Cole exponents 
(dimensionless). 

The first Cole-Cole model represents the 
polarization of low-frequency dispersion (index 
1). The second one corresponds to high-frequency 
dispersion (index 2), i.e., the Maxwell-Wagner 
polarization or the EM coupling [83]. 

The instantaneous and DC conductivity ( 0 ) 

are written as: 

σ∞=σ1
∞+σ2

∞ (A-2) 

σ0=σ1
0+σ2

0 (A-3) 

Based on the continuity condition on the 
conductivity: 

σ1
∞=σ2

0 (A-4) 

M1 and M2 are determined as: 

M1=
σ1

∞-σ1
0

σ∞

 (A-5) 

M2=
σ2

∞-σ2
0

σ∞

 (A-6) 

The chargeability, in general, is defined by 
M=(σ∞-σ0)/σ∞, so, the equation M=M1+M2 is valid 
and due to 0≤M≤1, we have 0 ≤ M1+M2 ≤ 1. σ1

∞ 
and σ2

∞ can be obtained from: 

σ1
∞=

1

2
σ∞(1-M2) (A-7) 

σ2
∞=

1

2
σ∞(1+M2) (A-8) 

To invert the complex conductivity spectra 
using the double Cole-Cole model, we use the 
nonlinear iterative method based on a Monte 
Carlo Markov Chain sampling algorithm [123]. 
The Bayesian method describes available prior 
information on the model vector, using a 
probability density P(m⃗⃗⃗ ). m⃗⃗⃗  is the model vector of 
unknown parameters 
m⃗⃗⃗ =[log(σ∝) ,M1,c1,log(τ1),M1,c2,log(τ2). Then, the 
algorithm combines this information with the 

observed data vector d⃗ obs and the provided 
information by the Cole-Cole model (Eq. A-1) 
L(m⃗⃗⃗ ). In Bayesian theory, the posterior probability 
density σ(m⃗⃗⃗ ) equals the product of the prior 
probability density P(m⃗⃗⃗ ) and a likelihood function 
L(m⃗⃗⃗ ) (Eq. A-9). σ(m⃗⃗⃗ ) measures the fit between the 
observed data and data provided by the model m⃗⃗⃗ . 

σ(m⃗⃗⃗ )=kP(m⃗⃗⃗ )L(m⃗⃗⃗ ) (A-9) 

where k is a normalization constant. We 
display the results of the complex conductivity by 

a vector of the observed data (d⃗ obs) with Gaussian 
experimental uncertainties. We utilize the 
independent identical Gaussian uncertainties 
distribution. Then, the likelihood function that 
characterizes the experimental uncertainties is 
calculated by the following Equation: 

L(m⃗⃗⃗ )=kexp (-S(m⃗⃗⃗ ) s2)⁄  (A-10) 

where s2 is the total noise variance, and S(m⃗⃗⃗ ) is 
the misfit function defined as: 
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S(m⃗⃗⃗ )=
1

2
∑ (gi(m⃗⃗⃗ )-dobs

i
)
2

n

i=1

 (A-11) 

where d⃗  is the data vector and g(m⃗⃗⃗ )=σ* is the 
forward-modelling function. The acceptance 
probability for a model is determined by: 

Paccept= {
1 if  S(m⃗⃗⃗ new)≤S(m⃗⃗⃗ old)

exp (-∆S s2)⁄ if  S(m⃗⃗⃗ new)>S(m⃗⃗⃗ old)
 (A-12) 

where ∆S=S(m⃗⃗⃗ new)-S(m⃗⃗⃗ old). The observed data 
in this inversion process are the real and 
imaginary parts of the complex conductivity 
calculated from the amplitude and phase 
measured at different frequencies. We consider 
the standard deviation (s) of 10% of the measured 
complex conductivity values related to the 
maximum experimental error [83]. Locally, 
uniform law is valid for describing the prior 
probability density on the model parameters. The 
law states that the probability distribution is 
constant over the interval [θ1,θ2] and vanishes in 
the other distances. To obtain the Cole-Cole 
parameters, Jeffrey’s parameters can be used for 
the inversion to satisfy the intervals conditions as 
0≤(M

1
,M2,c1,c2)≤1 and σ∞>0 [124]. Ultimately, we 

calculate the root-mean-square error (rms) as a 
criterion to qualify the quality of the fit, as: 

rms2=
1

n
∑ (

gi(m⃗⃗⃗ )-dobs
i

dobs
i

)

2n

i=1

 (A-13) 

where n is the number of measurements. 
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