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Keywords 
  Abstract 

To accurately predict the advance of a tunnel excavated by the 
drilling and blasting method, various parameters related to the rock 
and the operational conditions of the project should be taken into 
account. In this paper, a comprehensive model was developed to 
investigate the effects of different parameters on the advancement 
of such a tunnel. To achieve this goal, we conducted a systematic 

study at the tailrace tunnel of the Azad Dam in Iran. Rock properties, including the rock mass rating (RMR) 
and tunneling quality index (Q), as well as operational conditions such as blasting specific charge (q) and 
tunnel face area (A), were measured to establish comprehensive datasets for prediction. A total of 86 
tunneling data points were collected and considered in this study. A novel model was developed, 
combining multiple regression (MR) and rock engineering systems (RES), to estimate tunnel face advance. 
The RES coding method was improved by incorporating a multiple regression model. The proposed coding 
method creatively assesses the influencing parameters, providing the advantage of accommodating 
uncertainties in the RES analysis. It achieves this by modeling the relationship between the explanatory 
(independent) variables and response (dependent) variables, thereby quantifying the interaction matrix. 
To evaluate the accuracy of the proposed models for both MR and RES datasets, we used the coefficient of 
determination (R2), a significant statistical criterion. A comparison of the values predicted by the models 
demonstrated that RES offers a more suitable performance than MLR for predicting tunnel advance. 
Sensitivity analysis of the MR-RES models reveals that the effective parameters on tunnel advance, in 
descending order of influence, are RMR (35.62%), Q (28.6%), q (20.35%), and A (15.42%). This hybrid 
method can be developed in other fields of engineering without human judgment and considering the 
statistical background of the data. 
 

Tunnel Face Advance (TFC) 

Rock Engineering Systems (RES) 

Multiple Regression (MR) 

Drilling and blasting method 

1. INTRODUCTION 

Tunneling by drill-and-blast remains the most 
typical method in subsurface construction 
worldwide (Girmscheid and Schexnayder, 2002). 
This method involves the controlled use of 
explosives to break rock (Rana et al., 2020) and is 
adaptable to a wide range of rock conditions 
(Satici and Hindistan, 2006). However, drill and 
blast are often the only viable methods in 

situations such as short tunnels, large cross-
sections, cavern construction, cross-overs, cross 
passages, shafts, penstocks, etc. (Spathis and 
Gupta, 2012). To enhance the performance of this 
method in tunnel construction, it is vital to 
optimize each rock property and working 
condition involved in the construction process. 
The realistic assessment of the time and cost 
required to complete a tunnel is intrinsically tied 
to accurately predicting the tunnel advance rate 
(Farrokh, 2020). 
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Due to the significant uncertainty in the rock 
mass, estimating the tunnel advance rate is one of 
the most complex and critical tasks frequently 
encountered in tunnel excavation (Yagiz and 
Karahan, 2011). On the other hand, assessing 
tunnel advance rates is central to planning 
schedules and determining project costs in rock 
formations (Armaghani et al., 2019). Therefore, 
accurate progress estimations can be 
instrumental in reducing both costs and risk 
management challenges in tunneling projects. 
Developing predictive models has been a primary 
task and has been progressing for many years 
(Tarkoy, 1975; Ozdemir, 1977; Bruland, 1999; 
Okubo et al., 2003). Thankfully, with the 
accumulation of well-documented data and 
advancements in prediction methods, more 
understandable and applicable estimation 
equations and models are being created. 

A review of existing literature reveals that 
many models focus exclusively on tunneling with 
tunnel boring machines (TBM). Predicting TBM 
performance remains a pivotal research subject 
for tunnel engineers, as this problem has not yet 
been fully solved (Gokceoglu, 2022). Farrokh 
(2020) surveyed various models used in 
estimating advance rates for hard rock TBMs. 
Several prediction methods have been explored by 
researchers, including statistical multiple 
regression analysis (Alber, 2000; Gong and Zhao, 
2009; Hassanpour et al., 2009; Hassanpour et al., 
2010; Delisio et al., 2013; Salimi et al., 2016), 
artificial neural networks (Zhao et al., 2007; Yagiz 
et al., 2009; Armaghani et al., 2019; Koopialipoor 
et al., 2020; Nagrecha et al., 2020; Zhou et al., 
2020), metaheuristic algorithms (Zhou et al., 
2021), support vector machines (Mokhtari and 
Mooney, 2020), and neuro-fuzzy methods (Grima 
et al., 2000) to estimate TBM performance. 
However, these methods, derived from survey 
data from various tunnels and specific ranges of 
rock types, cannot be generalized for all ground 
conditions. Despite this, it is evident from the 
literature that drill-and-blast tunnel advance rates 
have been studied far less than those of 
mechanized tunnels, likely due to the challenges in 
assessing the interplay between input parameters, 
which renders the advance rate difficult to predict. 

 Due to the complexity of geological and 
geotechnical conditions along tunnel routes, 
predicting the advance rate is difficult. Robbins 
(1992) identified geologically related conditions 
and tunnel diameter as the most significant factors 
influencing the tunnel's advance rate. The 
literature states that rock properties are one of the 
most crucial parameters for tunneling 
performance estimation. Yagiz (2008) 
demonstrated that rock mass properties strongly 

affect TBM performance. Moreover, he pointed out 
that one of the most important parameters for 
predicting the TBM penetration rate is the 
engineering properties of the rock mass. 
Therefore, the primary issue for tunnels excavated 
in rock involves understanding the rock mass and 
engineering geological characteristics. Utilizing a 
rock mass classification system can be 
considerably beneficial in this scenario. Among 
the most commonly used classification systems, 
Rock Mass Rating (RMR) and Rock Mass Quality 
Index (Q) have been more frequently employed in 
tunneling performance prediction (Hamidi et al., 
2010). 

When designing a rock structure, it is essential 
to consider individual parameters such as intact 
rock, fractures, excavation, and their collective 
interaction. At this juncture, it is vital to identify 
the relevant physical variables and linking 
mechanisms and then consider their combined 
operation. We must also ensure that all pertinent 
factors and their interactions are accounted for. 
Due to the limitations of empirical and 
computational methods, a method that can 
consider all the relevant parameters 
simultaneously in the modeling to accurately 
predict the tunnel's advance rate is necessary. In 
such cases, Rock Engineering Systems (RES) can 
serve as one of the most potent innovative 
methods capable of simultaneously analyzing the 
relationships between effective parameters in the 
model (Hudson and Harrison, 2000). Considering 
how such interactions can be characterized when 
connecting rock mechanics principles to rock 
engineering applications is prudent. 

Many researchers have applied the RES model 
to various engineering problems, especially in the 
field of rock mechanics (Mazzoccola and Hudson, 
1996; Yang and Zhang, 1998; Latham and Lu, 
1999; Zhang et al., 2004; Rozos et al., 2008; Shin et 
al., 2009; Younessi and Rasouli, 2010; Rozos et al., 
2011; Faramarzi et al., 2013; Frough and Torabi, 
2013; Huang et al., 2013; Naghadehi et al., 2013; 
Andriani and Parise, 2017; Hasanipanah et al., 
2013; Rahmati et al., 2014; Mohammadi and Azad, 
2021). Further information regarding the 
application of RES in other fields can be found in 
the existing literature. However, this research 
demonstrates that rock engineering systems 
consider the influence of all the various factors in 
rock engineering problems. Consequently, a RES 
description of the overall interactive mechanisms 
in tunneling operations appears to be a promising 
foundation for an approach to predicting tunnel 
advance. Therefore, further research might be 
essential, and the method could be updated for 
more confident usage. 
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This paper addresses the RES analysis of face 
advance in tunnels excavated by the drill-and-
blast method. The study aims to develop a 
predictive model for tunnel face advance using 
data collected from the tailrace tunnel of the Azad 
dam in Iran. The database encompasses 
information on the properties of the rock, 
explosives, and tunnel. Consequently, a novel 
model was developed, combining multiple 
regression (MR) and rock engineering systems 
(RES). In the MR-RES model, efforts were made to 
reduce uncertainty in the assignment of codes 
through the statistical analysis of the data. 
Subsequently, the results obtained are compared 
with those derived from multiple linear regression 
models applied to the same data. Lastly, a 
sensitivity analysis was conducted to identify the 
parameters with the least and most impact on 
tunnel advance. 

Within the MR-RES model, an innovative 
approach is employed to mitigate uncertainty in 
code assignments through rigorous statistical 
analysis of the dataset. The outcomes derived 
from this model are then juxtaposed with those 
obtained from multiple linear regression models 
applied to the same dataset. Additionally, the 
study concludes with a sensitivity analysis, 
shedding light on the parameters exerting the 
least and most significant influence on tunnel 
advance. In summary, the paper offers a 
distinctive contribution by combining MR and RES 
methodologies, enhancing the reliability of 
predictive models, and conducting a thorough 
sensitivity analysis to discern the varying impacts 
of parameters on tunnel face advance. 

2. THEORY AND METHOD 

2.1. Rock Engineering System (Res) 

The Rock Engineering Systems (RES) 
methodology serves as a valuable analytical tool 
for characterizing influential factors and 
interaction mechanisms in rock engineering 
problems (Hudson, 1992). Interaction matrices 
enable a systematic approach to examining these 
interactions within the RES method. Such a matrix 
is a square matrix used to characterize the 
principal parameters and interaction mechanisms 
in RES. 

In the provided interaction matrix for a rock 
engineering system, all parameters influencing 
the system are arranged along the leading 
diagonal, known as the diagonal terms. The impact 
of each parameter on others is recorded at the 
corresponding off-diagonal positions, referred to 
as the off-diagonal terms. Fig. 1 illustrates a 2×2 
interaction matrix, where 'A' occupies the top left 

entry, and 'B' is located in the bottom right entry. 
The upper right and bottom left elements 
represent the effects of 'A' on 'B' and 'B' on 'A', 
respectively. Importantly, the influence of 'A' on 
'B' may differ from that of 'B' on 'A', resulting in an 
asymmetric matrix. Therefore, organizing the 
parameter interactions in a clockwise manner in 
the matrix is essential for accurate representation. 

 
Fig. 1. A general view of the interaction matrix featuring 

factors 'A' and 'B' in a RES (Hudson, 1992). 

The off-diagonal terms in the matrix are 
assigned numerical values, determining the extent 
to which one parameter influences others. This 
process is known as coding the matrix. Hudson 
proposed various methods for coding the 
interaction matrix to elucidate rock engineering 
systems, as depicted in Fig. 2 (Hudson, 2013). This 
figure illustrates five fundamental matrix coding 
methods in RES; namely binary, expert semi-
quantitative, relation between Pj and Pi, partial 
differential equation, and explicit numerical 
analysis of the mechanism. 

The Expert Semi-Quantitative (ESQ) method is 
often favored in most studies due to its simplicity. 
It involves assigning a unique code to each 
interaction, representing a parameter's influence 
on another within the matrix. Generally, codes 
range from 0 to 4, with 0 denoting no interaction 
and 4 signifying the maximum level of interaction. 
The main weakness of this coding method is the 
significant variability in the values assigned to the 
classes. Consequently, it fails to elucidate all the 
mechanisms of the parameters and their 
interrelationships. Additionally, the values in this 
coding method are not always constant; in most 
cases, it is impractical to designate an exact digit 
code for the precise particular interaction. This 
variability could arise from uncertainties in value 
assignments or even the underlying physics of the 
problem at hand. Therefore, it is imperative to 
employ coding methods that meticulously address 
uncertainties in code assignments are 
meticulously addressed. 

 



 

 

A combination model of multiple regression and rock … ANM Journal, Vol. 13, No. 37, Winter 2024 

 

60 

 
Fig. 2. Five basic matrix coding methods in RES (Hudson, 

2013). 

Fig. 3 illustrates the general concept of 
interaction matrix coding. In this matrix, the sum 
of each row is termed the cause (C) (Eq. 1), while 
the sum of each column is identified as the effect 
(E) (Eq. 2). In other words, each parameter's 
influence on the system and vice versa is 
denominated as C and E, respectively.  

C𝑝𝑖 = ∑ 𝐼𝑖𝑗

𝑛

𝑗=1

 (1) 

E𝑝𝑗 = ∑ 𝐼𝑖𝑗

𝑛

𝑖=1

 (2) 

The coordinate values for each parameter can 
be plotted in a cause-and-effect space, creating a 
C–E plot. The interactive intensity of each 
parameter is represented by the sum of the C and 
E values (C+E), serving as a gauge for the 
parameter's significance within the system. The 
(C+E) value, expressed as a percentage, can be 
utilized as the parameter's weighting factor (αi), 
defined as (Jiao and Hudson, 1995): 

α𝑖 =
(C𝑖 + E𝑖)

(∑ C𝑖𝑖 + ∑ E𝑖𝑖 )
× 100 (3) 

Where Ci signifies the cause of the ith 
parameter, Ei represents the effect of the ith 
parameter. 

 
Fig. 3. General perspective on the coding of the 

interaction matrix in a RES (Hudson, 1992). 

Each point's location on the cause-and-effect 
diagram indicates the interaction state of the 
corresponding parameter. A higher numerical 
value (C+E) for a given parameter suggests a more 
substantial interaction with the entire system. 
Conversely, depending on its sign, a larger 
differential value of (C−E) denotes a dominant 
influence of the parameter over the system. A 
negative (C−E) value highlights the system's 
dominance over the parameter. Fig. 4 displays the 
extended C−E diagram encompassing N-
influencing parameters. 

 
Fig. 4. The cause-effect diagram incorporating N 

influencing factors (Hudson, 1992). 

2.2. Multiple regressions (MR) 

The regression analysis is a set of statistical 
methods that can be utilized to identify the 
relationships between a response (dependent) 
variable and several explanatory (independent) 
variables. Multiple regression is a statistical 
technique used to analyze the relationship 
between a single dependent variable and several 
independent variables. It works by considering 
the values of the available multiple independent 
variables to predict the value of one dependent 
variable. Consequently, it increases reliability by 
avoiding dependence on just one variable and 
using more than one independent variable to 
support the event (Montgomery et al., 2021). 

The multiple linear regression (MLR) 
statistical technique is a method to establish a 
linear relationship between a dependent variable 
and several independent variables. Multiple 
nonlinear regression is a statistical technique used 
to model the relationship between a dependent 
variable and two or more independent variables 
when the relationship is not linear. The standard 
term used in statistical modeling for the scenario 
where there are multiple independent variables 
and a nonlinear relationship is Multiple Nonlinear 
Regression (MNLR) or simply Nonlinear 
Regression. In Nonlinear Regression, the 
relationship between the dependent variable and 
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the independent variables is modeled as a 
nonlinear function. This is in contrast to Multiple 
Linear Regression (MLR), where the relationship 
is modeled as a linear function. In Nonlinear 
Regression, the functional form of the relationship 
is not a straight line, allowing for more complex 
modeling of various relationships in the data. 
Multiple non-linear regression (MNLR) is used to 
model complex phenomena that linear models 
cannot handle. In this approach, both non-linear 
and linear relationships, such as exponential, 
logarithmic, and power relationships, can be 
employed. However, these methods have been 
used to establish mathematical formulas to solve 
many engineering applications (Moore et al., 
1993; Gessler et al., 2000). 

3. CASE STUDY AND DATA SOURCE 

The case study of this paper centers on the 
Azad pumped storage power plant project, from 
which excavation data were collected to create a 
robust database for tunnel face advance analysis. 
This project is situated in the western region of 
Iran, 40 km west of Kurdistan province, Northwest 
Iran (Fig. 5). 

From the geological standpoint, this region lies 
within the Sanandaj-Sirjan metamorphic zone, 
one of the geological divisions of Iran. The bedrock 
is composed of low-grade metamorphic 
sandstone, schist, and phyllite. Furthermore, 
limestone outcrops can be found in highland 
regions of the study area. Stratigraphically 
speaking, the region is covered by units dating 
from the Upper Cretaceous to the Quaternary 
periods. 

 

 
Fig. 5. Location map of the Azad pumped storage power 

plant project. 

This project is designed to store hydraulic 
potential using a pumping system under low-load 
conditions of the power supply network and then 
generate electricity using a turbine and generator 
during the peak load conditions of the network. It 
encompasses a set of underground excavations, 
including the upstream reservoir, pressure shaft, 
penstock, access, and tailrace tunnels, 
powerhouse and transformer caverns, and the 
lower dam reservoir (Fig. 6). The tailrace tunnel, 
also known as Payab, facilitates the transfer of 
water from the Azad dam. This tunnel was 
constructed using the drilling and blasting 
method, spanning 660 meters with a 40 square 
meter cross-sectional area. The drilling process 
necessitated blast holes with diameters of 51 mm 
and a depth of 3.5 meters. Dynamite served as the 
primary explosive material, utilized in both the 
drilling and initiation phases. 

 
Fig. 6. Layout of the Azad pumped storage power plant 

project. 

For this study, extensive fieldwork was 
conducted in the tailrace tunnel of the Azad 
pumped storage power plant project to gather 
sufficient data. The research employed the Rock 
Mass Rating (RMR) system to guide predictions of 
tunnel face advancement based on a 
comprehensive dataset compiled from 86 unique 
tunneling records. Data was collected with the 
contractor's professional team after each run of 
blasting to find the main effective parameters and 
use them in other blasting patterns. Numerous 
factors can influence the face advancement of a 
tunnel excavated by drilling and blasting 
operations. Pertinent data highlighted rock 
properties such as the RMR and tunneling quality 
index (Q), in addition to operational conditions 
such as the blasting specific charge (q) and tunnel 
face area (A), as pivotal in forming a robust dataset 
for predictions. Both RMR and Q are integral in 
clearly delineating the properties of the rock mass. 
Meanwhile, parameter A represents the 
transverse cross-section of the tunnel. Table 1 
details the extremities of these four parameters 
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alongside the observed tunnel face advancements 
(Pt). 

Table 1. The parameters used for predicting tunnel face 
advance 

Parameter Unit Min Max 

Rock mass rating ( RMR ) - 32 57 

Tunnelling Quality Index (Q) - 0.72 3.5 

blasting specific charge (q) kg/m3 0.505 4.007 

Tunnel face area (A) m2 36.7 54.53 

Tunneling penetration (Pt) m 1 4.65 

The significance of parameters in the modeling 
was investigated based on correlations between 
the independent variables and the actual 
measurements of tunnel face advance, with the 
latter serving as a dependent variable. The 
coefficient of determination (R²) and the root 
mean square error (RMSE) were used as 
indicators of correlation strength for each model 
(see Table 2). In Table 2, a second-order 
polynomial equation was selected to correlate 
main parameters with actual measurements. 
These four independent variables were chosen for 
further statistical analysis and model 
development at each stage. 

Table 2. The statistical relationship between the four 
independent variables with tunnel face advance. 

Independen
t variables 

Regression equation R2 RMSE 

RMR 
Pt = -0.0054RMR2 + 

0.5741RMR - 11.709 
0.6047 0.4639 

Q 
Pt = 0.1598Q2 - 

1.3139Q + 4.4917 
0.3341 0.6021 

q 
Pt = -0.1853q2 + 

0.0064q + 3.7636 
0.4129 0.5654 

A 
Pt = 0.0095A2 - 

0.859A + 22.127 
0.0854 0.7057 

4. TUNNEL FACE ADVANCED PREDICTION  

Based on the database collected from 86 
tunneling datasets, multiple linear regression 
(MLR) and RES were utilized to estimate the 
tunnel face advance. 

4.1. MLR Analysis  

MLR is one of the most established methods for 
fitting a linear equation between one or more 
independent parameters about a single dependent 
parameter. This method has been extensively 
developed to address problems in rock and tunnel 
engineering domains. 

Typically, the MLR model can be expressed as 
follows: 

Y = P0 + P1X1 + …+ PnXn (4) 

Where Xi (i=1,…,n ) and Y define independent 
and dependent parameters, respectively. In 
addition, Pi (i=0,1,…,n) represents regression 
coefficients. Taking the established datasets into 
account, Eq. (5) was derived to the tunnel face 
advance (Pt) using SPSS V16 software: 

Pt=2.84+ 0.051RMR - 0.39Q - 0.48q - 0.02A     (5) 

Where Pt represent penetration per each 
blasting run, RMR represent rock mass rating, Q 
represent tunneling quality index, q represent 
blasting specific charge kg/m3, and A represent 
tunneling area (m2). 

The calculated value of the Durbin-Watson test 
is 1.38, which is an acceptable range of results. 

In this equation, it initially appears that the 
parameter 'q' has a direct relation with 'Pt' but it's 
essential to note that the unit of this parameter is 
kg/m3. Even a small amount of penetration can 
result in a high 'q' It's important to recognize that 
'q' is related to the volume of excavation rock and 
the total charge of holes. 

According to Fig. 7, a relation between tunnel 
face advance's predicted and measured values can 
be plotted and developed. 

 
Fig. 7. A correlation between the predicted and measured 

values of tunnel face advance (Pt). 

In the following Multiple Linear Regression 
(MLR) analysis was conducted to investigate the 
effect of each parameter on tunnel face advance 
(Pt). As stated earlier, this research utilizes RMR, 
Q, q, and A as independent variables. Fig. 8 
displays the results of the sensitivity analysis for 
these variable parameters in tunnel face advance. 
As indicated in the figure, RMR is the most 
effective factor in the tunnel face advance 
prediction at the studied site. In this figure, with 
the percentage increase of the parameters, the 
value of the dependent variable also increases 
with different percentages. This figure shows the 
amount of penetration rate (Pt) changes based on 
the changes of the main parameters RMR, Q, q, and 
A. It was shown that RMR, Q, q and A have effect, 
respectively. 
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Fig. 8. Effect of independent variable parameters 

variation on tunnel face advance. 

4.2. RES Analysis  

As previously mentioned, quantifying the 
interaction matrix is a pivotal component of the 
RES method. The initial step involves establishing 
an interaction matrix that delineates the effective 
parameters impacting tunnel face advance. 
Following the construction of this matrix, it 
becomes necessary to 'code' the off-diagonal 
components, a process that highlights their 
significance and facilitates the matrix's 
mathematical utilization. 

To overcome the limitations of traditional 
coding methods, our approach involves a novel 
coding method implemented within the RES 
systems framework. The main weakness of the 
traditional coding methods lies in the 
uncertainties surrounding the assignments of 
values in each interaction. To address this, we 
propose a novel coding method for the interaction 
matrix to be implemented within the RES systems 
framework. In this method, the value of 
interaction between each pair of parameters is 
derived from a statistical analysis involving 
independent and dependent variables. 
Consequently, the strength of the relationship 
between each primary parameter is indicated by 
the coefficient of determination, R². Therefore, the 
main parameters are found on the main diagonal 
of the interaction matrix, while a coefficient of 
determination represents the relationships 
between parameters found off-diagonal. 
Following the provided explanations, we coded 
the interaction matrix using four main parameters 
analyzed through regression analysis. The 
correlation results between the variable 
parameters, based on polynomial regression 
analysis, can be viewed in Table 3. 

 
 

Table 3. The correlation between main parameters in the 
polynomial regression analysis. 

Parameters Regression 
equation 

R2 
Dependent Independent 

RMR Q 
RMR = -3.8022Q2 + 
9.3998Q + 41.856 

0.2239 

RMR q 
RMR = -1.0457q2 + 

0.4724q + 49.34 
0.1597 

RMR A 
RMR = 0.1004A2 - 
8.9657A + 242.71 

0.1225 

RMR Pt 
RMR = -0.6734Pt

2 
+ 9.5418Pt + 

23.622 
0.5097 

Q RMR 
Q = 0.0072RMR2 - 

0.6859RMR + 
17.386 

0.4645 

Q q 
Q = 0.0377q2 + 

0.0252q + 1.1048 
0.03926 

Q A 
Q = -0.0101A2 + 

0.9445A - 20.131 
0.2436 

Q Pt 
Q = 0.1543Pt2 - 

1.2964Pt + 3.7443 
0.3757 

A RMR 
A = 0.0215RMR2 - 

2.0117RMR + 
85.095 

0.1706 

A Q 
A = 1.0222Q2 - 

2.0516Q + 39.508 
0.1627 

A q 
A = 0.289q2 - 

1.8972q + 41.228 
0.04195 

A Pt 
A = 0.9854Pt2 - 

6.0401Pt + 47.611 
0.1333 

q RMR 
q = 0.0018RMR2 - 

0.2034RMR + 
7.2434 

0.1611 

q Q 
q = -0.3657Q2 + 

1.5191Q + 0.5458 
0.09682 

q A 
q = 0.0075A2 - 

0.6897A + 17.172 
0.08591 

q Pt 
q = 0.0331Pt2 - 

0.7064Pt + 3.6427 
0.3832 

Pt RMR 
Pt = -0.0054RMR2 

+ 0.5741RMR - 
11.709 

0.6047 

Pt Q 
Pt = 0.1598Q2 - 

1.3139Q + 4.4917 
0.3341 

Pt q 
Pt = -0.1853q2 + 

0.0064q + 3.7636 
0.4129 

Pt A 
Pt = 0.0095A2 - 

0.859A + 22.127 
0.0854 

According to the obtained R2 values, the 
interaction between the parameters has been 
established and is displayed in Table 3. In this 
interaction matrix, the main and effective 
parameters (RMR, Q, q, A) influencing the tunnel 
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face advance (Pt) are situated on the main 
diagonal. The values representing the intensity of 
the influence one parameter has on another are 

placed in off-diagonal positions. To quantify the 
off-diagonal elements, the R2 coding method has 
been utilized (see Table 3). 

Table 4. The interaction matrix of RES. 

RMR 0.4645 0.1611 0.1706 0.6047 1.4009 

0.2239 Q 0.09682 0.1627 0.3341 0.81752 

0.1597 0.03926 q 0.04195 0.4129 0.65381 

0.1225 0.2436 0.08591 A 0.0854 0.53741 

0.5097 0.3757 0.3832 0.1333 Pt 1.4009 

1.0158 1.12306 0.72703 0.50855 1.0158  

The cause (C) and effect (E) values, depicting 
the interactive intensity and dominance of each 
parameter illustrated by the sum (C+E) and 

subtraction (C-E) of the C and E values, and the 
weighting factor (αi), are presented in Table 5. 

Table 5. The weighting of the effective parameters in the tunnel face advance 

NO. Parameter C E C+E C-E αi (%) 

1 RMR 1.4009 1.0158 2.4167 0.3851 35.62 

2 Q 0.81752 1.12306 1.94058 -0.30554 28.60 

3 q 0.65381 0.72703 1.38084 -0.07322 20.35 

4 A 0.53741 0.50855 1.04596 0.02886 15.42 

Sum 3.40964 3.37444 6.78408 0.0352 100 

Fig. 9 depicts the Cause-Effect diagram 
delineating the effective parameters influencing 
tunnel face advance. In the diagram, points 
situated above and below the C-E line are 
designated as subordinate and dominant, 
respectively. Here, the parameters RMR, Q, q, and 
A are denoted with numbers 1 through 4, as 
referenced in Table 5. The diagram reveals that 
RMR and A function as subordinate parameters, 
whereas Q and q assume roles as dominant 
parameters. 

 

 
Fig. 9. Cause-effect diagram for the effective parameters 

of the tunnel face advance. 

Furthermore, the values of dominance (C - E) 
and interactive intensity (C + E) for each 
parameter are shown in Fig. 10. Based on Table 5 

and Fig. 9, RMR, Q, q, and A have the highest 
weights in the RES system, respectively. 

 
Fig. 10. C+E value versus main parameters. 

Beyond employing the polynomial regression 
method, this study also incorporated linear and 
power methods to compute and juxtapose the 
results. The influences of the various parameters 
on progress through these three approaches are 
delineated in Table 6. Consistently, all methods 
emphasize the substantial effects of the 
parameters RMR, Q, q, and A, listed in descending 
order of impact. In this study, the polynomial 
trend line served as the preferred tool for coding 
the interaction matrix, grounded in its realistic 
portrayal of non-symmetrical matrices and its 



 

 

Noorian-Bidgoli and Golmohammadi ANM Journal, Vol. 13, No. 37, Winter 2024 

 

65 

meticulous evaluation of the relationships 
between parameters. Overall, each method 
demonstrated consistent trends and effectiveness, 
endorsing their logical relevance in this context. 

Table 6. Parameters effects on the tunnel face advance in 
three methods. 

Parameter 
Polynomial Liner Power 

αi (%) 

RMR 35.62 35.97 38.21 

Q 28.61 28.32 29.06 

q 20.35 26.01 20.76 

A 15.42 9.70 11.97 

Sum 100.00 100.00 100.00 

5. CONCLUSIONS 

In this paper, an improvement to the rock 
engineering system (RES) coding method is 
presented through the use of a novel coding 
technique. A key innovation in this paper involves 
coding the main diagonal matrix through 
statistical analysis without relying on human 
judgment. The primary effective parameters 
influencing tunneling progress were investigated 
using two main methods, MLR and RES, 
demonstrating concordant results. For the first 
time, a new hybrid method for coding the 
interaction matrix was utilized. This approach 
entailed coding the interaction matrix based on 
the R-square value, subsequently validated 
through analytical strategies. The R-square 
interaction matrix was devised employing three 
regression methods—polynomial, linear, and 
power—and the outcomes were compared, 
confirming the consistent significance and 
relevance of the parameters. This new method 
offers considerable benefits. Firstly, it eliminates 
the necessity for expert parameter values in the 
interaction matrix formulation, and secondly, in 
the polynomial regression method, a non-
symmetric and more realistic interaction matrix is 
created compared to conventional approaches. 
The hybrid method was applied in a case study 
involving the Azad tailrace tunnel, emphasizing 
the paramount significance of the RMR parameter, 
followed by proportional reductions in Q 
(system), q (specific charge), and A (area). 

Considering the non-unique nature of 
interaction matrix codes, probabilistic coding can 
be performed non-deterministically, thereby 
addressing the uncertainties inherent in RES 
analysis. This technique consequently identifies 
parameters with the highest likelihood of being 
dominant or subordinate and those most likely to 
be interactive. Thus, this proposed strategy stands 
as a simple yet potent tool for assessing the 

parameters influencing the cavability of rock 
masses in block-caving mines, aiding in decision-
making amidst uncertainties. Similar strategies 
employing different parameters can be devised for 
tunneling projects in other geological settings. 
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