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Keywords  Abstract  

Anomaly separation based on stream sediments data is an important step for 
mineral exploration. In this article, three methods of cluster analysis, factor 
analysis and fractal geometry have been used to separate the anomalous and 
suspected mineralization areas from the background areas. By combining 
these three methods, a possible mineralization was found in Maleksiahkuh 
area. In addition, the relationship between the anomalies and the anomaly's 

host rocks was discussed. Maleksiahkuh is located 35 kilometers north of Zahedan and in the eastern part 
of the Flysch zone, Iran. Multivariate statistical analysis was performed. The results show a positive 
correlation between copper and molybdenum. The amount of chromium from the field is relatively high. 
Chromium is rich in the host mafic rocks. The presence of large concentrations of chromium in the region 
can be attributed to the presence of mafic rocks. The highest positive correlation was observed between 
manganese and cobalt, which is about 0.997. In addition, iron with titanium has a correlation of 0.984. 
Cobalt with iron has a correlation of 0.975. The cluster analysis for the region confirmed the existence of 
three clusters. The third cluster containing elements As, Sr, Sn, Sb, Pb, Cu, and Ag is probably related to the 
base-metal mineralization. Factor analysis was performed on the elemental concentrations. The sixth 
factor, which Cu and Ag elements have the highest weight age, was considered as another mineralization 
factor. The location of the most concentrated copper in the map derived from the Number-size (N-S) fractal 
method corresponds to the highest score in the factor rating map. There is a good match between copper 
anomalies and mafic rocks. Green crests have always been associated with mineralization, and studies 
show that there is a good relationship between mineralization and these rocks. 
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1- Introduction 

The study area is located in Sistan and Baluchestan 
province, near Zahedan city, Iran. The study area is 
located in the Zahedan 1: 250,000 scale geology map. 
The difference in temperature overnight throughout 
the year is high in the area. The most important 
mountain in the region is the Maleksiahkuh with a 
height of 1605 meters and the lowest point in the area  
 
are river sediments, flood plains and alluvial 
altitudes. 

The results of traditional methods based on classical 
statistics have long been used as the only methods of 
analysis that have defects such as the normal 
distribution condition, the deletion of some data as 
outliers, the failure considering the spatial 
distribution of the data and the lack of attention to the 
geometric shape of the anomalies [1]. In addition, 
while processing geochemical data using classical 
statistical methods, a large number of data are 
deleted as values  outlier. These issues, together with 
the lack of attention to the geometric shape of the 
anomaly, make it obscure and, even in some cases, the 
removal of some actual anomalies or, in some cases, 
poorly illustrated them [1]. 

Cluster analysis is one of the statistical methods used 
to reduce data and find real groups. The purpose of 
the cluster analysis is to divide the dataset into 
distinct groups based on the similarity or difference 
between the groups. A good outcome of cluster 
analysis will result in a number of clusters where the 
observations within a cluster are as similar as 
possible while the differences between the clusters 
are as large as possible [2]. This method has many 
applications in earth sciences and has been used by 
many researchers [3, 4, 2]. 

Factor analysis is one method that can help identify 
more simple patterns within a set of variables. 
Specifically, this method seeks to discover a much 
smaller number of variables in cases where we can 
explain the observed changes with them [1]. One of 
the main goals of the factor analysis technique is the 
reduction of data dimensions [1]. The basic 
hypothesis in using this technique is the presence of a 
subsurface pattern or specific model in determining 
the complex communication concepts between 
variables, which appears as an agent in this 
hypothetical model. In general, the purpose of factor 
analysis is to determine the main coordinator 
variables among a geochemical data series and to 
evaluate the relative contribution of different 
variables to the development of the distribution of 
elements [5, 6]. 
Fractals have been widely applied in various 
disciplines to understand and analyze complex 
process. In the field of geochemistry, fractal methods 

have gained attention for their ability to explain and 
quantify anomaly patterns in geochemical data. This 
literature review aims to provide an overview of the 
applications of fractal methods in geochemical 
studies, focusing on their role in anomaly separation, 
characterizing mineral distributions, understanding 
self-organization processes, and predicting 
geochemical behavior. 
Fractal analysis has been utilized to characterize the 
spatial and temporal distribution of geochemical 
parameters, such as element concentrations. These 
studies often utilize fractal dimension (FD) to 
quantify the degree of complexity and heterogeneity 
of pattern distributions. Fractal analysis has been 
applied in investigations of mineral deposits, and 
hydrothermal systems. The fractal approach has 
proven valuable in describing the distributions of 
minerals within rocks and soils. Fractal models have 
been employed to characterize ore body geometries, 
investigate porosity and permeability in reservoir 
rocks, and identify trends in mineral zoning patterns. 
Fractal models have also been employed to predict 
and simulate geochemical behavior, especially when 
dealing with complex systems. Fractal models, 
combined with probability-based approaches and 
geostatistical techniques, have been utilized to 
simulate [x]. The utilization of fractal methods in 
geochemical fields has remarkably advanced our 
inspection of complex patterns, and predictability of 
geochemical behavior. However, more research is 
needed to refine and develop fractal methodologies to 
address specific geochemical challenges, and improve 
the integration of fractal analysis with other 
statistical and machine learning techniques. 

 

Fractal geometry is a nonlinear mathematical 

technique which was established by Mandelbrot 

(1983). Methods based on fractal geometry are useful 

for anomaly separation. These methods include the 

concentration-area (C-A) and concentration-

perimeter (C-P) fractal models [7,8], spectrum-area 

(S-A) fractal model [9,10], concentration- volume (C-

V) fractal model [11], spectrum-volume (S-V) fractal 

model [12], wavelet-number (W-N) fractal model and 

simulated size-number (SS-N) fractal model, Monte 

Carlo simulation algorithm (GSS-N) [13]. The C-A 

fractal model that was presented by Cheng et al. 

(1994) has been applied by many geoscientists [14, 

15, 16, 11, 17, 18, 19; 20, 21, 22, 23,24, 25, 26, 27].  

Stream sediment samples (n=192) were used to 
identify geochemical anomalies. Stream sediment 
samples of the −80 mesh (0.18 mm) fraction were 
collected from the center of the streams. 
Concentrations of the elements were measured by X-
ray fluorescence spectrometry and atomic absorption 
spectrometry (AAS). The main purpose of this article 
is to identify potential areas for mineralization. 
Multivariate statistical methods and fractal geometry 
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have been used for this purpose. Cluster analysis, 
factor analysis, and fractal number-size (N-S) 
methods were used and the results were compared. 
The geology of the area was first studied. 
Observations were made on the field. The 
morphology of the study area, its topography and all 
different types of rocks in the area were studied. 
Stream sediment samples were taken in the study 
area. The histogram of the elements was plotted. The 
distribution of elements was tested for normality or 
non-normality. Then, elements were classified by 
cluster analysis method. Factor analysis was also 
performed and the map with related mineralization 
factor was drawn. Finally, by using the Number-Size 
(N-S) method, the anomaly areas of Maleksiahko area 
were suggested. 

2- Geology of the studied area 

Maleksiahkuh is located in 35 Km north of 

Zahedan in the flysch zone of eastern Iran. The most 

notable elevation of the region is the volcanic 

Maleksiahkuh mountain with a height of 1605 

meters. The lowest points of the region are rivers, 

flood plains, and alluvial barracks. Due to the fact that 

the relative elevation and topography determine the 

speed of erosion processes, most of the rivers are 

scattered and extend over broad areas. The flysch 

zone of eastern Iran has a rift between the Afghan 

block and the Lut block, which is Upper Cretaceous in 

age [23]. The main rocks of this zone are Cretaceous 

ophiolite and ophiolitic mélanges (remnants of an 

oceanic crust) and Late Crataceous to Paleogene 

flysch-like marine sedimentary rocks that were 

intruded by rocks of subduction, collision and post-

collision events. Figure 1 shows the map of structural 

zones of Iran [24] in which the Maleksiahkuh region 

lies in the Nahbandan-Khash zone. 

The geology of the Maleksiahkuh is shown in 

Zahedan geological map (1/2500000) (Fig.2). The 

geological units in this area are flysch-like rocks such 

as shale, sandstone, mudstone, marl and limestone 

associated with conglomerate and several types of 

igneous rocks. The sedimentary rocks were locally 

metamorphosed or altered in contact to intrusive 

plutons.  The igneous rocks occur as stock, dike, sill 

and lava. Biotite and amphibole separated from rocks 

of Maleksiahkuh yielded approximate K-Ar ages of 

27-28 Ma. [25]. The igneous rocks in the study area 

are intermediate to mafic rocks, such as andesite, 

dacite, granodiorite and gabbro (Fig. 3). Sedimentary 

rocks in the area include sandstone, marl, shale, and 

limestone, with the shales typically interbedded with 

sandstones. The sandstone layers in the shales are 

generally of different thicknesses and commonly have 

ripple marks. Sandstones are also associated with 

shale and marl in most places. Conglomerate is 

sparsely distributed in the coarser sandstones, and 

include sandstone, shale, slate, and phyllite along with 

rarer igneous fragments. Limestones locally occur 

with calcareous sandstones often containing reefal 

fossils. The igneous rocks are mainly calc-alkaline 

shoshonite and related to post collisional tectono-

magmatic setting [26]. The generation and 

emplacement of such magma are assumed to be 

related to the movements of the Zahedan fault, a post-

collisional strike-slip fault situated at the eastern 

margin of the flysch zone [26].  
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Fig. 1. Map of structural zones of Iran in which the Maleksiahkuh region lies in the Nahbandan-Khash zone [22]. 

 
 

]. 

Fig. 2. Geological map of the Maleksiahkuh area (modified from geological map of Zahedan) 
Fig. 3. Field photographs for the local granodiorite intrusion "A" and related subvolcanic dacite porphyry "B" in the study area.  

 

3- Methodology 

3-1- Cluster analysis 
The principle of cluster analysis is that n different 
samples are regarded as n different classes, and the 

two classes with the closest properties (or the 
shortest distance) can be merged into the same class. 
Then, the next two classes with the closest properties 
(or the shortest distance), from the n−1 classes, are 
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combined [1]. This process continues until all the 
samples have been merged into a single class. The 
basic algorithm steps of cluster analysis are shown 
below [1]: 
At the beginning, each sample is a separate class, and 
the distance matrix between two pairs of n classes is 
calculated, denoted as: 
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Find the minimum distance value dij in the distance 
matrix, and denoted as di1j1 , and combine the i1 and 
j1 classes into the n − 1 class. 
Calculate the distance between class n −1 and other 
classes; 
Merge rows i1, j1 in the initial distance matrix D0 into 
new row, and columns i1, j1 into new column, the 
number of classes is reduced by one. We can get the 
new distance matrix D1. 
Repeat steps (2) (3) and (4) until n samples are 
clustered into one class. 
The clustering process was made into a cluster 
analysis diagram. And the original samples were 
screened according to the cluster analysis diagram to 
eliminate the samples that did not meet the 
requirements[1]. 
3-2-Factor analysis 

Factor analysis assumes that relationships 
within a set of variables reflect correlations with a 
smaller number of underlying factors. The main 
applications of factor analytical techniques are to 
diminish the number of variables and to distinguish 
structure in the relationships between variables, or to 
classify them [1]. A special feature of this technique is 
that it extracts factors or principal components which 
are linear combinations of all variables that can 
explain the maximum of total variance successively. 
Thus the first factor explains the maximum variance; 
the remaining factors define the maximum of the 
residual variability. The factors extracted are 
uncorrelated or orthogonal to each other. The 
variances extracted by the factors are called the eigen 
values. Since the first factor explains maximum 
variance it has the highest eigen value. The sum of 
eigen values of all factors will be equal to the total 
number of variables [1]. 
3-3-Fractal number-size (N-S) model 

Number–size (N–S) method can be utilized to 
describe the distribution of geochemical populations. 
This model shows a relationship between desirable 
attributes and their cumulative numbers of samples. 
A power-law frequency model has been proposed to 
explain the N–S relationship according to the 

frequency distribution of elemental concentrations 
and cumulative number of samples with those 
attributes (Daya, 2015a): 

(1)                              𝑁(≥ 𝜕) = 𝐾𝜕−𝐷                                                                        

where 𝝏 denotes elemental concentration, 
𝑵(≥ 𝝏)denotes the cumulative number of samples 
with concentration values greater than or equal to 𝝏, 
K is constant, and D is the fractal dimension of the 
distribution of elemental concentrations. Log–log 
plots of N(≥𝝏) versus 𝝏 show straight line segments 
with different slopes −D corresponding to different 
concentration intervals [18]. 

 
4- Statistical survey of data 

One of the essential steps of each geochemical 
exploration phase is the design of sampling network, 
so, it is necessary to design it with a high degree of 
accuracy. Basically, in the stream sediments 
geochemical exploration, optimal sampling is 
performed to obtain the desired result. Considering 
the aforementioned factors, 192 geochemical samples 
were taken from an area of 49 km2 and the 
concentration of important elements was 
determined. Stream sediment samples of the −80 
mesh (0.18 mm) fraction were collected from the 
center of the streams. Concentrations of the elements 
were measured by X-ray fluorescence spectrometry 
(XRF) and atomic absorption spectrometry (AAS). 
International standard samples (JSD1, JSD2) and 
replicates were analyzed after every 10 samples for 
checking accuracy and precision. Mean deviations 
between the measured concentrations and reference 
values were less than 10%. Figure 4 shows the 
location of these samples. Table 1 shows the 
statistical parameters of selected elements of 317 
stream sediment samples from Maleksiahkuh region. 
Preparation and chemical analysis of the samples 
took place. In geochemical data extracted from the 
study area, most elements had sensor data. Since the 
number of sensor data of the study area was 
insignificant (less than 10%), the simple replacement 
method was used. In the case of identifying outlier 
values in this paper, it is assumed that the high values 
are anomalous and are not considered as outlier 
values and used in statistical calculations. 

A statistical survey on the data of the 
Maleksiahkuh showed that the arsenic, copper, 
molybdenum, zinc, lead, and chromium elements are 
notably higher than their Clark values. Figure 5 shows 
the frequency (histogram) of these elements. One of 
the applications of the Q-Q plot diagrams is to 
evaluate the frequency distribution of elements. The 
closer the curve to the line is, the distribution 
becomes normal. The Q-Q plot for these elements is 
also shown in Fig. 6. From these shapes and diagrams, 
it can be deduced that the molybdenum, chromium, 
and arsenic elements have a normal distribution, and 
lead, copper, and zinc elements have no normal 
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distribution. The lead and zinc analyses yield 
histograms showing a bimodal distribution. 

 

 Fig. 4. Location of the sediment samples taken in the Maleksiahkuh 
area  

 

In geochemical survey, important elements of 
the samples are often measured. Since any given 
group of elements exhibit a similar sensitivity to 
specific environmental conditions, recognizing the 
existing genetic correlations between different 
elements can be used to better understand the 
changes in geochemical environments. In addition, 
the genetic accumulation of some elements may be 
used as a direct guide to determining the type of 
deposit that is probably present in the area. The 
correlation coefficients of the Pearson method for the 
main elements of the Maleksiahkuh area are 
presented in Table 2. This was done using SPSS 16 
software. 

5- discussion 

It can be concluded from table 2 that the 
highest positive correlation was observed between 
the manganese and cobalt (the main origin is the sea 
floor) elements, which is about 0.979, iron with 
titanium 0.984 and cobalt with iron is 0.975.  

A hierarchical cluster analysis was conducted 
for the main elements in the study area. Cluster 
analysis is one of the multivariate methods aimed at 
achieving a criterion for classifying the most suitable 
variables or samples based on more internal 
similarity and more discrepancy between groups [1]. 
In this study, the criterion of the correlation 
coefficient and clustering algorithm is the Ward 
method and Pearson Product (r). The results are 
dendrogram in Fig. 7. As shown in the figure, the 
elements are divided into three separate clusters. The 

first cluster contains the elements Fe, Ti, Cr, Co, Mn. 
These elements are hydrophilic and are often placed 
on the margin of mineralization. The second cluster 
consists of Mo, Zn, Ni elements. In the third cluster, 
the elements of As, Sr, Sn, Sb, Pb, Cu, Ag are included. 
The first cluster is not related to the mineralization 
because they are hydrophilic and are often placed on 
the margin of mineralization. The third cluster 
associated with mineralization in post-magmatic 
phases or hydrothermal processes. Hydrothermal 
solutions can be the cause for mineralization. 
Hydrothermal solutions by impregnating the 
embedded rocks can cause mineralization. In total, it 
appears that the third cluster represents a base-metal 
mineralization center, and other clusters are also 
associated with mineralization, including porphyry 
Cu-Ag related systems possibly located around 
mineralized systems [27, 2]. 

To determine the accuracy and confirmation of 
factor analysis, the KMO coefficient was calculated. 
The large quantities of this coefficient signify 
confirmation of factor analysis and its small values 
imply that the factor analysis is not approved. KMO 
was 0.74 (> 0.50) which was acceptable. By applying 
factor analysis on the values of variables, special 
values, percentage variance and cumulative percent 
of variance of each factor are calculated separately. 
The number of significant factors revealed that 
according to the scree plot (Fig. 8) and the table of 
data variances obtain from factor analysis (Table 3), 
the number of factors is 6. These six factors justify a 
total of 76.353 percent of environmental change. 

The first factor, in which the elements Cr, Mn, 
Co, Fe, and Ti have the highest eigenvalues, but is 
unrelated to mineralization and is a function of the 
rock composition. The elements of this group are 
almost identical to those of the first cluster of the 
cluster analysis. This factor justifies around 30% of 
the environmental change. The second factor includes 
Ni, Zn, and Mo with high eigenvalues, which can 
justify lithological and mineralogical changes in the 
region. This factor justifies 16% of the environmental 
change and corresponds to the second cluster of 
cluster analysis. The largest eigenvalues in the third, 
fourth and fifth factor belongs to the mineralization 
trace elements. These trace elements include As, Sb, 
Cs, and Sr. In factor six, Cu and Ag have the highest 
weight (copper has the highest positive weight and 
silver with the highest negative weight), which can 
justify copper mineralization and silver dilution. Fig.9 
shows the 6th factor score map in the Maleksiahkuh 
area. This map was generated with IDS (Inverse  
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Fig.5 .Histogram for arsenic, copper, molybdenum, lead, zinc, and chromium (in ppm or g/t) in the Maleksiahkuh area 

 
Distance Squared) method using RockWorks™ 

v. 2006 software package. As shown in the figure, 
copper mineralization in the southwest of the region 
is maximum and dilution is also observed in the 
north-east of the region. 

Number-size (N-S) graphs were drawn for 
arsenic, copper, silver, lead, zinc, and chromium (Fig. 
10). The values of these elements were more of their  

 
 
 

Clark. For this reason, only these six elements 
were examined. As seen in these figures, there are 
different populations for different elements. There is 
five population for arsenic, three for copper, three for 
molybdenum, six for lead, four for zinc, and five for 
chromium in the community.  

There are four enrichment phases for Cu. The 
first and second phases are background. The third 
and fourth population are Cu anomalies. 
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Fig. 6: The Q-Q plot for the studied elements. 
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Table 1: Statistical parameters of selected elements of 317 stream sediment samples from Maleksiahkuh region. 

 

Table 2. Correlation matrix between important elements in the stream sediment of the Maleksiahkuh area 

 

Ag  1 

As  .035 1  

Co  .070 .091 1  

Cr  .092 .086 .887** 1  

Cu  .113 .030 .170* .113 1  

Fe  .123 .100 .975** .894** .126 1  

Mn  .061 .110 .979** .882** .151* .954** 1  

Mo  -.092 -.054 .143* .142 .017 .051 .215** 1  

Ni  -.093 -.072 .064 .054 .111 -.089 .074 .596** 1  

Pb  -.029 .285** .428** .308** .170* .371** .420** .110 .203** 1  

Sb  -.055 .066 .055 .021 .098 .055 .100 .133 .020 .170* 1  

Sn  -.072 .246** .234** .148* .119 .214** .226** -.063 .103 .462** .585** 1  

Ti  .089 .073 .972** .891** .107 .984** .954** .035 -.070 .363** .046 .226** 1  

Zn  -.060 -.022 .334** .269** .101 .201** .405** .752** .691** .243** .059 -.002 .207** 1 

Element

s (ppm) 

 

Ag As Co Cr Cu Fe Mn Mo Ni Pb Sb Sn Ti Zn 

 

 

Cr(ppm) Fe(ppm) Co(ppm) Ni(ppm) Sn(ppm) Zn(ppm) Pb(ppm) Mo(ppm) Cu(ppm) As(ppm) 
 

116.50 2.75 13.50 48.25 2.15 
 

46.20 18.50 1.30 28.10 18.11 Mean 

112 2.50 13 49 2 67 10 1.26 25.64 15.94 Median 

32.55 1.60 13.95 5.80 
0.7

6 

33.52 13.03 0.56 1.64 7.95 
Std. 

Deviatio

n 

1059.20 2.50 15.51 33.74 0.58 1127.80 176025 0.31 266.25 63.081 
Varianc

e 

3.971 6.9 6.13 0.167 1.82 -0.30 -0.972 0.55 11.331 1.582 
Skewnes

s 

32.171 51.90 46.50 1.042 8.75 
-1.47 0.60 -0.92 143.4 3.35 Kurtosis 

50 1.65 9 36 0.75 
5 1 0.25 19.55 0.001 

Minimu

m 

342 16.72 48 74 7 106 73 3 273.30 52.12 
Maximu

m 
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C A S E      0         5        10        15        20        25 

Label     Num  +---------+---------+---------+---------+---------+ 

 

Fe          5   ─┬───────────┐ 

Ti         11   ─┘           ├─────────┐ 

Cr          4   ─────────────┘         ├─────────────────────────┐ 

Co          3   ─┬─────────────────────┘                         │ 

Mn          6   ─┘                                               │ 

Mo          7   ─────────┬───────────┐                           │ 

Zn         12   ─────────┘           ├─────────────────────────┐ │ 

Ni          8   ─────────────────────┘                         │ │ 

As          2   ───────────────────────┬─────────────────┐     ├─┘ 

Sr         15   ───────────────────────┘                 ├─┐   │ 

Sn         10   ───────────────┬─────────────────────┐   │ │   │ 

Sb         14   ───────────────┘                     ├───┘ ├───┘ 

Pb          9   ───────────────────────────────┬─────┘     │ 

Cu         13   ───────────────────────────────┘           │ 

Ag          1   ───────────────────────────────────────────┘ 
Fig. 7. Dendrogram obtained from the hierarchical cluster analysis method in the Maleksiahkuh area 

Fig .8. Scree plot to see the number of factors in the study area 
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Table 3. Level of variance obtained from factor analysis 

Compo

nent 

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total % of Variance Cumulative % Total 

% of 

Variance 

Cumulative 

% 

1 5.310 29.498 29.498 5.310 29.498 29.498 4.969 27.608 27.608 

2 2.888 16.045 45.543 2.888 16.045 45.543 2.515 13.970 41.578 

3 2.101 11.674 57.217 2.101 11.674 57.217 2.017 11.205 52.783 

4 1.285 7.141 64.358 1.285 7.141 64.358 1.617 8.981 61.764 

5 1.109 6.160 70.518 1.109 6.160 70.518 1.479 8.217 69.981 

6 1.050 5.836 76.353 1.050 5.836 76.353 1.147 6.373 76.353 

7 .985 5.471 81.824       

8 .852 4.732 86.556       

9 .801 4.453 91.008       

10 .463 2.574 93.582       

11 .354 1.967 95.549       

12 .295 1.641 97.190       

13 .219 1.218 98.409       

14 .125 .693 99.102       

15 .118 .658 99.760       

16 .021 .119 99.879       

17 .015 .082 99.961       

18 .007 .039 100.000       

Extraction Method: Principal 

Component Analysis. 

      

Copper shows multifractal nature in the 
region. The condition of Mo is a little different from 
copper. As cab be seen in the figure 10, there are three 
population for Mo. The first and second phases are 
background and the last phases is enrichment phases 
i.e. anomaly. The anomaly maps of these elements are 
depicted in Fig. 11. Extreme concentrations of copper 
in the southwest of the region (Fig. 11) are well 
matched by increasing the score of the sixth factor 
(probable copper mineralization) (Fig. 9). This means 
that the factor analysis is valid in the area. Comparing 
the location of this anomaly with the geological map, 
the copper anomaly seems associated with 

intermediate andesite and trachyandesite rocks; 
given that most of the copper mineralization is 
associated with the intermediate masses, this is 
possibly related to PCD. 

Lead, Cr, Cu, and As have a strong anomaly in 
the southeast of the study area. By studying the 
geological map of the study area, it can be said that 
this anomaly is correlated to the sandstone, schist, 
shale and green siltstones. The greenschist arches and 
belts have always been associated with 
mineralization, and in this area it can be concluded 
that the host of this mineralization is also the same 
type of greenschist belts. Arsenic has scattered 
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anomalies, which is due to its traceability. In addition, 
in some cases there is a good correlation between 
arsenic anomalies with zinc and lead anomalies 
(Ghorbani 2013; Daya 2105a). 

 
6-Conclusions 

Geological surveys conducted in the area 
showed that the geological units consist of flysch-like 
rocks, including shale, sandstone, mudstone, and 
various types of igneous rocks. The sedimentary 
rocks experienced localized changes when they came 
into contact with intrusive rocks. The igneous rocks 
found in the research site comprise andesite, alkaline 
basalts, and diorite. A set of statistical surveys was 
conducted in the Maleksiahkuh area. The findings 
revealed that the concentrations of arsenic, copper, 
molybdenum, zinc, lead, and chromium in this region 
are higher compared to their usual background 
concentrations. Particularly, the concentration of 
chromium in the area was found to be notably high, 
which is possibly attributed to the presence of mafic 
rocks. Furthermore, a Q-Q plot was generated to 
analyze the distribution of these elements. The plot 
indicated that molybdenum, chromium, and arsenic 
followed a normal distribution pattern, while lead, 
copper, and zinc displayed a distribution pattern that 
deviated from normality. Multivariate analysis 

revealed that Maleksiahkuh’s manganese and cobalt 
exhibited the highest correlation at approximately 
0.979, followed by iron and titanium at 0.984, and 
cobalt and iron at 0.975. Cluster analysis was carried 
out in the study area to identify the main groups, 
resulting in three separate clusters. The third cluster, 
consisting of As, Sr, Sn, Sb, Pb, Cu, and Ag, was 
associated with mineralization. The variables were 
subjected to factor analysis, and out of the six factors 
available, the sixth factor with Cu and Ag elements 
had the highest eigenvalues. Copper had the highest 
positive weight, while silver had the highest negative 
weight, indicating their importance as mineralization 
factors. The Sixth Factor Score map shows a potential 
area for copper mineralization in the southwest of 
Maleksiahkuh. By using the N-S fractal model, Cu 
anomalies were detected. These copper anomalies in 
the southwest region correspond well with the sixth 
factor scoring map, indicating probable copper 
mineralization. Therefore, it is recommended to 
conduct more detailed studies and collect lithological 
samples in the northwest region. The fractal method 
and factor analysis method showed a strong 
correlation. The copper anomaly aligns with the 
presence of greenschist rocks, which have always 
been associated with mineralization in green schist 
belts and arcs. 
 

Fig. 9. Sixth factor map for the Maleksiahko area 



 

 

 

Fig. 10 Number-size (N-S) graphs for arsenic, copper, molybdenum, lead, zinc, and chromium (ppm – g/t) 
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Fig. 11. Map of anomalies of elements based on the Fractal number-size (N-S) model in the Maleksiahkuh area 
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