مقایسه مقاومت تک محوره مدل عددی و آزمایشگاهی توده‌سنگ درزه‌دار

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه تهران

چکیده

ارزیابی مقاومت توده سنگ در انتخاب محل مناسب، طراحی و اجرای موفق پروژه­های معدنی و عمرانی از ملزومات اولیه است. مقاومت فشاری سنگ بکر می­تواند به کمک آزمون­های استاندارد آزمایشگاهی تعیین شود، درحالی‌که تعیین این پارامتر برای توده سنگ به‌شدت درزه‌دار خیلی مشکل است. تخمین سریع این خصوصیت جهت ارزیابی اولیه، به‌طور قابل‌ملاحظه‌ای هزینه آزمایش‌های صحرایی را کاهش می دهد. آزمون­های آزمایشگاهی زیادی به وسیله محققین مختلف بر روی توده سنگ درزه­دار با ترکیب درزه­های متفاوت برای تعیین مقاومت فشاری تک محوری انجام شده است. در این تحقیق، مدل­های آزمایشگاهی، به کمک روش المان مجزا در حالت سه بعدی به کمک نرم‌افزار 3DECمدل‌سازی گردیده و تغییرات مقاومت حداکثر نسبت به تغییرات شیب درزه ها و گام یا قفل‌شدگی موردبررسی قرار گرفته است و نتایج حاصل از مدل‌سازی سه‌بعدی با نتایج آزمایشگاهی و نتایج حاصل از مدل‌سازی دو بعدی (نرم‌افزار UDEC) مورد مقایسه قرار گرفت است و ملاحظه شد که نتایج مدل‌سازی سه بعدی اختلاف کمتری نسبت به مدل‌سازی دو بعدی از نتایج آزمایشگاهی را نشان می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison Study between Numerical and Physical Modelling of UCS of Jointed Rock Mass

نویسندگان [English]

  • M Asadizadeh
  • R Rahmannejad
چکیده [English]

An accurate assessment of strength of jointed rock masses is one of the most important requirements in the site selection, design and successful execution of mining engineering and geotechnical projects. The strength of intact rock can be determined through standardized laboratory tests, although this is very difficult for heavily jointed rock masses. A quick estimation of these properties for preliminary evaluation of alternate sites will considerably reduce field tests costs. A large number of laboratory tests on a jointed rock mass with various joint configurations had been done by many researchers in order to determine the strength of jointed rock under uniaxial loading. In this present paper, an attempt has been made to compare the results between numerical simulation of experimental modeling on strength and deformability of jointed block masses. For this purpose, numerical simulation of experimental tests for rock mass modulus and strength has been done by 3 Dimensional Distinct Element Code (3DEC). Results showed that numerical simulation and experimental testes have a good agreement and numerical simulation can be used in order to estimate deformation modulus of rock mass.

کلیدواژه‌ها [English]

  • Numerical simulation
  • Uniaxial Compression Test
  • Jointed rock mass
  • Strength
  • 3DEC
  • UDEC
[1]. Hoek k. 1983, Strength of jointed rock masses. Géotechnique Journal. 23, 3, pp 187-223.
[2]. Noorian Bidgoli, M., Zhao, z., Jing, L. 2013, Numerical evaluation of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering 5, 419–430.
[3]. Singh, M. and Rao, K. S. and Ramamurthy, T. 2002. Strength and Deformational Behavior of a Jointed Rock Mass. J. Rock Mechanics and Rock Engineering, 35, 1, pp. 45-64.
[4]. Singh M, Rao K.S. 2005a, Bearing capacity of shallow foundations in anisotropic non Hoek–Brown rock masses, ASCE Journal of Geotechnical and Geo-environmental Engineering 131 (8), 1014–1023.
[5]. Singh M, Rao K.S. 2005b, Empirical methods to estimate the strength of jointed rock masses, Engineering Geology 77, 127–137.
[6]. Singh M. and Singh, B. 2008, High lateral strain ratio in jointed rock masses, Engineering Geology 98: 75–85.
[7]. Bieniawski, ZT. 1974. Geomechanics classification of rock masses and its application in tunnelling. In: Proceedings of the third congress of the international society for rock mechanics. Denver, pp 23–32.
[8]. Bieniawski, ZT. 1979. The geomechanics classification in rock engineering applications. In: Proceedings of the fourth congress of ISRM, vol 2, Montreux, pp 41–48
[9]. Serafim, JL, Pereira, JP. 1983. Considerations on the geomechanical classification of Beniawski: experience from case histories. In: Proceedings of symposium on engineering geology and under-ground openings, Lisbon, pp 1133–1144.
[10]. Boyd, RD. 1993. Elastic properties of jointed rock masses with regard to their rock mass rating value. In: Cripps JC et al (eds) The engineering geology of weak rock. Balkema, Rotterdam, pp 329–336.
[11]. Hoek, E., 1994, Strength of rock and rock masses, ISRM New J 2(2):4–16.
[12]. Mitri, HS, Edrissi R, Henning J. 1994. Finite element modelling of cable-bolted slopes in hard rock ground mines. In: Presented at the SME annual meeting. Albuquerque, New Mexico, pp 94–116
[13]. Hoek, E., Kaiser, PK., Bawden, WF. 1995. Support of underground excavations in hard rock. Balkema, Rotterdam, p 215.
[14]. Hoek, E., Carranza-Torres, C., Corkum, B. 2002, Hoek–Brown failure criterion -2002 edition. In: Proceedings of 5th North American Rock Mechanics Symposium and Tunneling Association of Canada Conference: NARMS-TAC, pp. 267–271
[15]. Hoek, E., Brown, ET. 1997. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci 40, 701–710.
[16]. Hoek, E., Diederichs, MS. 2006, Empirical estimation of rock mass modulus, Int. J. Rock Mech. Min. Sci. 43,203–215.
[17]. Verman, M., Singh, B., Viladkar, MN, Jethwa, JL. 1997. Effect of tunnel depth on modulus of deformation of rock mass. Rock Mech Rock Eng 30(3), 121–127.
[18]. Sonmez, H., Ulusay, R. 1999. Modifications to the geological strength index (GSI) and their applicability to stability of slopes, Int J Rock Mech Min Sci 36,743–760.
[19]. Palmström, A., Singh, R. 2001. The deformation modulus of rock masses—comparisons between in situ tests and indirect esti-mates, Tunnel Undergr Space Technol 16,115–131.
[20] Barton, N. 2002. Some new Q-value correlations to assist in site characterization and tunnel design, Int J Rock Mech Min Sci 39,185–216.
[21]. Kayabasi, A., Gokceoglu, C., Ercanoglu, M, 2003, estimating the deformation modulus of rock masses: a comparative study. Int J Rock Mech Min Sci 40, 55–63.
[22]. Cai, M., Kaiser, PK., Uno, H., Tasaka, Y., Minami, M. 2004. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int J Rock Mech Min Sci 41, 3–19.
[23]. Zhang, L., Einstein, HH. 2004. Using RQD to estimate the deformation modulus of rock masses, Int J Rock Mech Min Sci 41,337–341.
[24]. Sonmez, H., Gokceoglu, C., Ulusay, R. 2004, Indirect determination of the modulus of deformation of rock masses based on GSI system, Int J Rock Mech Min Sci 41,849–857.
[25]. Sonmez, H., Gokceoglu, C., Nefesalioglu, HA., Kayabasi, A. 2006. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation, Int J Rock Mech Min Sci 43,224–235.
[26]. Agan, C. 2014, Determination of the deformation modulus of dispersible-intercalated-jointed cherts using the Menard pressuremeter test. International Journal of Rock Mechanics & Mining Sciences 65, 20 – 28.
[27]. Pouya, A., Ghoreychi, M. 2001, Determination of rock mass strength properties by homogenization. International Journal for Numerical and Analytical Methods in Geomechanics 25(13), 1285–303.
[28]. Sitharam, TG. 2009. Equivalent continuum analyses of jointed rock mass: some case studies. International Journal of the JCRM 5(1), 39–51.
[29]. Lemos, J. V., Halt, RD., Cundall, PA. 1985. A generalized distinct element program for modelling jointed rock mass. In: Proceedings of the International Symposium on Fundamentals of Rock Joints. Centek, p. 335–43.
[30]. Lorig, L. J., Brady, B. H. G., Cundall, P, A. 1986. Hybrid distinct element-boundary element analysis of jointed rock, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 23(4), 303–12.
[31]. Cundall, PA. 1988. Formulation of a three-dimensional distinct element model. Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, International Journal of Rock Mechanics and Mining Sciences 25(3), 107–16.
[32]. Jing, L., Stephansson, O. 2007. Fundamentals of discrete element methods for rock engineering: theory and applications (developments in geotechnical engineering). Amsterdam, Netherlands: Elsevier Science BV.
[33]. Singh, M. 1997, Engineering behaviour of jointed model materials, Ph.D. Thesis, IIT, New Delhi, India.
[34]. Itasca (2007), 3 Dimensional Distinct Element Code, Minneapolis, USA.
[35]. Franklin J. A., Dusseault M. B. 1989, Rock engineering. McGraw-Hill, New York.