مدلسازی عددی رفتار چاه نفت درتشکیلات شیلی با روش تفاضل محدود (مطالعه موردی: یکی از چا ه های نفت مید ان مارون)

نوع مقاله : یادداشت فنی

نویسندگان

گروه مهندسی معدن، دانشگاه بین‌المللی امام خمینی(ره)

10.29252/anm.8.15.115

چکیده

90 درصد مشکلات ناپایداری چاه‌ها مربوط به حفاری در سازندهای شیلی رخ می‌دهد. از طرفی سازند‌های شیلی در 75 درصد مقاطع حفاری شده در ایران یافت می‌شوند که سبب بروز تعدادی از مشکلات مانند فروپاشی کامل یا جزئی چاه و یا حتی از دست دادن چاه قبل از رسیدن به هدف خود (مخزن) منجر می‌شوند. در این تحقیق، به کمک مدلسازی عددی توسط نرم‌افزار Flac2D به بررسی پایداری دیواره چاه نفت در سازندهای شیلی پرداخته‌شده‌است. این مدلسازی در 3 حالت حفاری چاه صورت گرفته‌است. حالت اول، حفاری بدون اعمال فشار گل درون چاه در حین حفاری و حالت دوم، حفاری بالای تعادل به صورتی که فشار گل حفاری از فشار منفذی سازند بیشتر باشد و حالت سوم، حفاری تحت تعادل به صورتی که فشار گل حفاری پایین‌تر از فشار منفذی سازند باشد. نتایج مدلسازی عددی نشان داد که بیشترین جابجایی و سطح پلاستیک اطراف چاه در حفاری بدون اعمال فشار گل بوده و جابجایی در حفاری‌های بالای تعادل و تحت تعادل به شدت کاهش پیدا کرده و کمترین جابجایی و سطح پلاستیک اطراف چاه در حفاری بالای تعادل رخ داده‌است. در این تحقیق تحلیل پایداری دیواره چاه و تعیین فشار گل بهینه برای پایداری چاه در روش الاستوپلاستیک، با استفاده از روش تعیین سطح تسلیم نرمالیزه (NYZA) صورت گرفته‌است و درصورتی‌که مقدار آن از حد بحرانی تعریف شده کمتر باشد، چاه پایدار بوده‌است. نتایج نشان داد که پارامتر NYZA با چگالی سیال حفاری رابطه معکوس دارد، به طوریکه هرچه فشار سیال حفاری و چگالی آن بالا برود، دیواره چاه پایدارتر و NYZA چاه کم می‌شود. از طرفی براساس روش NYZA که مقدار آن برای پایداری دیواره چاه در روش عددی مقدار بحرانی 1 می‌باشد، می توان دریافت که از فشار گل 22 مگاپاسکال به بالا، وارد محدوده پایداری در چاه مورد مطالعه می‌شویم. فشار گل بهینه در چاه مورد مطالعه، در حفاری تحت تعادل 02/33 مگاپاسکال تا 71/33 و برای حفاری بالای تعادل 09/35مگاپاسکال تا 78/35بدست آمده است. تمام نتایج در لایه‌ شیلی سازند آسماری در عمق 3915 متری از یکی از چاههای نفت مخزن مارون ایران بدست آمده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Modeling Of Behaviour Of Wellbore In Shaly Formations using finite difference method (Case study: one of the oil wells in Marun Field)

نویسندگان [English]

  • Sina Shahbazi
  • Mehdi Hosseini
Department of Mining Engineering, Imam Khomeini International University
چکیده [English]

Summary
During or after underground drilling such as oil well drilling, instabilities are observed in wells, in such a way that 90% of these instabilities are related to Shale formations. On the other hand, Shale formations are found in 75% of all drillings in Iran, causing various difficulties such as complete or partial collapse of wells before reaching the reservoirs. Shale porosity may vary from small (a few %) to quite high (up to 70%). Even with highest porosities, permeability remains very small.  In this study, by considering geophysical log data and using experimental relations (presented by researchers) in Shale rock, physical and mechanical properties of Shale layer in Asmari formations are calculated and after that by using finite difference method (FLAC2D software), stability of wellbore in Shale formation has been surveyed.
 
Introduction
The modeling was done in 3 modes of drilling. The first mode is drilling without pressurizing mud into the well, the second, drilling at a higher pressure than balance condition i.e. drilling mud pressure to be higher than the pore pressure. The third mode is underbalance condition in which the drilling mud pressure is lower than the pore pressure. The results of numerical modeling showed that the most displacements and plastic surface around the well occurred when the drilling mud was not pressurized. The displacement underbalance and over balance condition significantly decreased and the minimum amount of displacements and plastic surface around the well occurred at higher than balance condition.
 
Methodology and Approaches
In this study, analysis of stability of wellbore and determination of the optimum mud pressure for wellbore stability has been carried out by elastoplastic method. If this value is less than the critical value defined by Normalized Yielded Zone Area (NYZA) the wellbore is considered to be stable.
 
Results and Conclusions
The results showed that the NYZA parameter is inversely proportional to the density of drilling mud, so that increasing drilling mud pressure and its density; results in more stable well bore and lower NYZA of the well. Based on NYZA method using numerical technique the critical value for wellbore stability is 1 and it can be realized from the surveyed well that the mud pressure over 22 MPa is within the scope of stability zone. Optimum mud pressure range obtained for the surveyed well is 33.02-33.71MPa for balance drilling and 35.09-35.78MPa for after balance drilling. All these data are obtained from Shale formation of one of the oil wells in Marun Field at a depth of 3915 meters.

کلیدواژه‌ها [English]

  • Numerical modeling
  • Wellbore
  • Marun field
  • Shale formation
[1]           Chen, X. & Tan, C.P. & wu, B. & Haberfield, C.M. (1988)’Modelling of the undrained behavior of wellbores’, The Geotechnics of Hard Soils-Soft Rocks, proceedings of the second international symposium on hard soils-soft rocks, Napoli, Italy, pp 483-489.
[2]           Meier, T. & Rybacki, E. & Reinicke, A. & Dresen, G. (2013) ‘Influence of borehole diameter on the formation of borehole breakouts in black shale; International Journal of Rock Mechanics and Mining Sciences; Volume 62, pp 74–85.
[3]           Mohammadzade Sani, M. (2013) ‘Wellbore Stability Design In Shale Formations’ Petroleum Engineering Master's Thesis, Faculty of Engineering, Kerman Shahid Bahonar University (In Persian).
[4]           Zamiran, S. (2014) ‘Modeling and Analysis of Soil and Rock Structures in Flac (Functional examples)’ Publishers Noavar (In Persian).
[5]           Afshoon, R & Asadolah pour, A. & Jalali far, H. (2011)’ Instability in the wellbore On one of the oil reservoirs in Iran’, The Third Congress of Iranian Petroleum Engineering (In Persian).
[6]           Hawkes, C. D. & McLellan, P.J., (1996) ‘Modeling of yielded zone enlargement around a wellbore’ Proceedings of 2nd North American Rock Mechanics Symposium, Montreal, Quebec, Canada.
[7]           Salehi, S. & Hareland, G. & Nygaard, R. (2010) ‘Numerical simulations of wellbore stability in under-balanced-drilling wells’, Journal of Petroleum Science and Engineering; Volume 72, pp 229–235.
[8]           Mclellan,P. & Hawkes,C., (2001) ‘Borehole Stability Analysis for under balanced Drilling’, advanced Geo technology Inc .
[9]           Shirin Abadi, R. & Rasouli, V. & Goshtasbi, K. (2006) ‘Stability Analysis of Oil wells in Iran’ the first Congress of Iranian Petroleum Engineering (In Persian).
[10]         Qian, W. & Yingcao, Z. & Gang, W. & Hongwei, J. & Yushi, L. (2012)’Afluid Solid Chemistry Coupling Model for shale wellbore stability’,Petroleum Exploration and Development; Volume 39, Issue 4 , pp 508-513.
[11]         Parra, J.G. & Celis, E. & De Gennaro, S. (2003)’wellbore stability Simulations for  underbalanced drilling Operations in Highly Depleted Reserviors’,SPE Drilling & Completion.
[12]         Yu, M. & Chen, G. & Chenevert, ME. & Sharma, MM. (2001)’Chemical and thermaleffects on wellbore stability of shale formations’, SPE 71366, New Orleans, 30 September–3 October 2001.
[13]         Mengjiao, Yu. & Chenevert, E. & Martin, (2003)’Chemical-mechanical wellbore instability model for shales: accounting for solute diffusion’, Jurnal of petroleum Science and Engineering 38, p131-143.
[14]         Chen, G. & Chenevert, M.E. & Sharma, M.M. & Mengjiao, Yu. (2003)’A Study of wellbore stability in shales including poroelastic, chemical and thermal effects’, Journal of Petroleum Science and Engineering 38, 167-176.
[15]         Islam, M.A. & Skalle, P. & Tantserev Evgeniy, NTNU. (2009)’Analytical and numerical study of consolidation effect on time delayed borehole stability during underbalanced drilling in shale’,In proceedings of the IPTC 09/SPE drilling conference, Kuwait, Desember 14-19. SPE 127554.
[16]         Sarout, J. & Detournay, E. (2011) ‘Chemoporoelastic analysis and experimental validation of the pore pressuretransmission test for reactive shales’,International Journal of Rock Mechanics & Mining Sciences 48, 759–772.
[17]         Merlani, AL. & Salusti, E. & Violini, G.(2011) ‘Non-linear waves of fluid pressure and contaminant density in swelling shales’,Journal of Petroleum Science and Engineering 79, 1–9.
[18]         Nouraie nejad, KH. A. & Amiri Bakhtiyar, H. & Mohammadian, R. A. & Azizi, A. PH. (2014) ‘Geometric and kinetic variables reservoir fractures Maroon oil field’ Journal of Earth Sciences, 24Th, No 93, pp 37-46 (In Persian).
[19]         Mirzagholi Poor, A. & Haghi, A. H. (1990) ‘Marun Oilfield geological study’ Report No 4210, Department of Geology expansion, National South Oil Company, pp 55 (In Persian).
[20]         Mirzagholi Poor, A. & Haghi, A. H. (1989) ‘Study the geological layers 4 and 5 Asmari of Marun Oilfield’ Report No 4135, Department of Geology expansion, National South Oil Company (In Persian).
[21]         Fjaer, E. & Holt, R. M. & Horsrud, P. & Raaen, A. M. & and Risnes, R. (2008) ‘Petroleum Related Rock Mechanics’, 2nd Ed, Amesterdam, Elsevier.
[22]         Horsrud, P. (2001)” Estimating Mechanical Properties of Shale from Empirical Correlations” SPE 56017, 27 March 2001.
[23]         Zoback, Mark D. (2007) ’Reservoir Geomechanics’ New York, United States of America: Cambridge university press.
[24]         Miller, S. L. M. & Stewart, R. R.,(1990) ‘effects of lithology, porosity and shaliness on p_ and s_ wave velocities from sonic logs’,Canadian Journal of Exploration geophysics, Vol.26, p 94-103
[25]         Najibi, A. R. & Ghafoori, M. & Lashkaripour, Gh. R. & Asef, M. R. ,(2015) ‘Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran’ Journal of Petroleum Science and Engineering 126 ,78–82.
[26]         Ahmadi, M. & Soleymani, M. & Salehi Siyavoshni, N. (2010) ‘Stability of oil wells in Ahvaz Shale layers’ Monthly magazine Oil Research, No 63, pp 12-18 (In Persian).
[27]         Al-Ajmi A.M. & Zimmerman R. W., (2006) “Stability analysis of vertical boreholes using the Mogi-Coulomb failure criterion”, Int. J. Rock Mech. & Min. Sci. & Geomech. pp 1-15, 10.1016
[28]         Josh, M. & Esteban, L. & Delle Piane, C. & Sarout, J. & Dewhurst, D.N. & Clennell, M.B., (2012). ‘Laboratory characterisation of shale properties’ Journal of Petroleum Science and Engineering 88–89, 107–124.