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Keywords 
  Abstract 

Anomaly separation based on stream sediment data is an important 
step for mineral exploration. In this article, three methods of cluster 
analysis, factor analysis and fractal geometry have been used to 
separate the anomalous and suspected mineralization areas from 
the background areas. By combining these three methods, a possible 
mineralization was found in the Maleksiahkuh area. In addition, the 

relationship between the anomalies and the anomaly's host rocks was discussed. Maleksiahkuh is located 
35 kilometers north of Zahedan and in the eastern part of the Flysch zone, Iran. Multivariate statistical 
analysis was performed. The results show a positive correlation between copper and molybdenum. The 
amount of chromium from the field is relatively high. Chromium is rich in the host mafic rocks. The 
presence of large concentrations of chromium in the region can be attributed to the presence of mafic rocks. 
The highest positive correlation was observed between manganese and cobalt, which is about 0.997. In 
addition, iron with titanium has a correlation of 0.984. Cobalt with iron has a correlation of 0.975. The 
cluster analysis for the region confirmed the existence of three clusters. The third cluster containing 
elements As, Sr, Sn, Sb, Pb, Cu, and Ag is probably related to the base-metal mineralization. Factor analysis 
was performed on the elemental concentrations. The sixth factor, which Cu and Ag elements have the 
highest weightage, was considered as another mineralization factor. The location of the most concentrated 
copper in the map derived from the Number-size (N-S) fractal method corresponds to the highest score in 
the factor rating map. There is a good match between copper anomalies and mafic rocks. Green crests have 
always been associated with mineralization, and studies show that there is a good relationship between 
mineralization and these rocks. 
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Cluster analysis  
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Maleksiahkuh 

1. INTRODUCTION 

The study area is located in Sistan and 
Baluchestan province, near Zahedan city, Iran. The 
study area is located in the Zahedan 1: 250,000 
scale geology map. The difference in temperature 
overnight throughout the year is high in the area. 
The most important mountain in the region is the 
Maleksiahkuh with a height of 1605 meters and 

the lowest points in the area are river sediments, 
flood plains, and alluvial altitudes. 

The results of traditional methods based on 
classical statistics have long been used as the only 
methods of analysis that have defects such as the 
normal distribution condition, the deletion of 
some data as outliers, the failure considering the 
spatial distribution of the data, and the lack of 
attention to the geometric shape of the anomalies 
[1]. In addition, while processing geochemical 
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data using classical statistical methods, a large 
number of data are deleted as values  outliers. 
These issues, together with the lack of attention to 
the geometric shape of the anomaly, make it 
obscure and, even in some cases, the removal of 
some actual anomalies or, in some cases, poorly 
illustrated them [1]. 

Cluster analysis is one of the statistical 
methods used to reduce data and find real groups. 
The cluster analysis aims to divide the dataset into 
distinct groups based on the similarity or 
difference between the groups. A good outcome of 
cluster analysis will result in several clusters 
where the observations within a cluster are as 
similar as possible while the differences between 
the clusters are as large as possible [2]. This 
method has many applications in earth sciences 
and has been used by many researchers [3, 4, 2]. 

Factor analysis is one method that can help 
identify more simple patterns within a set of 
variables. Specifically, this method seeks to 
discover a much smaller number of variables in 
cases where we can explain the observed changes 
with them [1]. One of the main goals of the factor 
analysis technique is the reduction of data 
dimensions [1]. The basic hypothesis in using this 
technique is the presence of a subsurface pattern 
or specific model in determining the complex 
communication concepts between variables, 
which appears as an agent in this hypothetical 
model. In general, the purpose of factor analysis is 
to determine the main coordinator variables 
among a geochemical data series and to evaluate 
the relative contribution of different variables to 
the development of the distribution of elements 
[5, 6]. 

Fractals have been widely applied in various 
disciplines to understand and analyze complex 
processes. In the field of geochemistry, fractal 
methods have gained attention for their ability to 
explain and quantify anomaly patterns in 
geochemical data. This literature review aims to 
provide an overview of the applications of fractal 
methods in geochemical studies, focusing on their 
role in anomaly separation, characterizing 
mineral distributions, understanding self-
organization processes, and predicting 
geochemical behavior. 

Fractal analysis has been utilized to 
characterize the spatial and temporal distribution 
of geochemical parameters, such as element 
concentrations. These studies often utilize fractal 
dimension (FD) to quantify the degree of 
complexity and heterogeneity of pattern 
distributions. Fractal analysis has been applied in 
investigations of mineral deposits, and 
hydrothermal systems. The fractal approach has 

proven valuable in describing the distributions of 
minerals within rocks and soils. Fractal models 
have been employed to characterize ore body 
geometries, investigate porosity and permeability 
in reservoir rocks, and identify trends in mineral 
zoning patterns. 

Fractal models have also been employed to 
predict and simulate geochemical behavior, 
especially when dealing with complex systems. 
Fractal models, combined with probability-based 
approaches and geostatistical techniques, have 
been utilized to simulate [x]. The utilization of 
fractal methods in geochemical fields has 
remarkably advanced our inspection of complex 
patterns, and predictability of geochemical 
behavior. However, more research is needed to 
refine and develop fractal methodologies to 
address specific geochemical challenges and 
improve the integration of fractal analysis with 
other statistical and machine-learning techniques. 

Fractal geometry is a nonlinear mathematical 
technique which was established by Mandelbrot 
(1983). Methods based on fractal geometry are 
useful for anomaly separation. These methods 
include the concentration-area (C-A) and 
concentration-perimeter (C-P) fractal models 
[7,8], spectrum-area (S-A) fractal model [9,10], 
concentration-volume (C-V) fractal model [11], 
spectrum-volume (S-V) fractal model [12], 
wavelet-number (W-N) fractal model and 
simulated size-number (SS-N) fractal model, 
Monte Carlo simulation algorithm (GSS-N) [13]. 
The C-A fractal model that was presented by 
Cheng et al. (1994) has been applied by many 
geoscientists [14, 15, 16, 11, 17, 18, 19; 20, 21, 22, 
23,24, 25, 26, 27].  

Stream sediment samples (n=192) were used 
to identify geochemical anomalies. Stream 
sediment samples of the −80 mesh (0.18 mm) 
fraction were collected from the center of the 
streams. Concentrations of the elements were 
measured by X-ray fluorescence spectrometry and 
atomic absorption spectrometry (AAS). The main 
purpose of this article is to identify potential areas 
for mineralization. Multivariate statistical 
methods and fractal geometry have been used for 
this purpose. Cluster analysis, factor analysis, and 
fractal number-size (N-S) methods were used and 
the results were compared. The geology of the 
area was first studied. Observations were made on 
the field. The morphology of the study area, its 
topography, and all the different types of rocks in 
the area were studied. Stream sediment samples 
were taken in the study area. The histogram of the 
elements was plotted. The distribution of 
elements was tested for normality or non-
normality. Then, elements were classified by 
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cluster analysis method. Factor analysis was also 
performed and the map with related 
mineralization factor was drawn. Finally, by using 
the Number-Size (N-S) method, the anomaly areas 
of the Maleksiahko area were suggested. 

2. GEOLOGY OF THE STUDIED AREA 

Maleksiahkuh is located in 35 Km north of 
Zahedan in the flysch zone of eastern Iran. The 
most notable elevation of the region is the volcanic 
Maleksiahkuh mountain with a height of 1605 
meters. The lowest points of the region are rivers, 
flood plains, and alluvial barracks. Because the 
relative elevation and topography determine 
erosion processes' speed, most rivers are 
scattered and extend over broad areas. The flysch 
zone of eastern Iran has a rift between the Afghan 
block and the Lut block, which is Upper 
Cretaceous in age [23]. The main rocks of this zone 
are Cretaceous ophiolite and ophiolitic mélanges 
(remnants of an oceanic crust) and Late 
Cretaceous to Paleogene flysch-like marine 
sedimentary rocks that were intruded by rocks of 
subduction, collision, and post-collision events. 
Fig. 1 shows the map of structural zones of Iran 
[24] in which the Maleksiahkuh region lies in the 
Nahbandan-Khash zone. 

The geology of the Maleksiahkuh is shown in 
the Zahedan geological map (1/2500000) (Fig. 2). 
The geological units in this area are flysch-like 

rocks such as shale, sandstone, mudstone, marl, 
and limestone associated with conglomerate and 
several types of igneous rocks. The sedimentary 
rocks were locally metamorphosed or altered in 
contact with intrusive plutons.  The igneous rocks 
occur as stock, dike, sill, and lava. Biotite and 
amphibole separated from the rocks of 
Maleksiahkuh yielded approximate K-Ar ages of 
27-28 Ma. [25]. The igneous rocks in the study 
area are intermediate to mafic rocks, such as 
andesite, dacite, granodiorite, and gabbro (Fig. 3). 
Sedimentary rocks in the area include sandstone, 
marl, shale, and limestone, with shales typically 
interbedded with sandstones. The sandstone 
layers in the shales are generally of different 
thicknesses and commonly have ripple marks. 
Sandstones are also associated with shale and 
marl in most places. Conglomerate is sparsely 
distributed in the coarser sandstones, and include 
sandstone, shale, slate, and phyllite along with 
rarer igneous fragments. Limestones locally occur 
with calcareous sandstones often containing 
reefal fossils. The igneous rocks are mainly calc-
alkaline shoshonite and are related to post-
collisional tectonic-magmatic settings [26]. The 
generation and emplacement of such magma are 
assumed to be related to the movements of the 
Zahedan fault, a post-collisional strike-slip fault 
situated at the eastern margin of the flysch zone 
[26]. 

 

 

Fig. 1. Map of structural zones of Iran in which the Maleksiahkuh region lies in the Nahbandan-Khash zone [22]. 
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Fig. 2. Geological map of the Maleksiahkuh area (modified from geological map of Zahedan). 

 
Fig. 3. Field photographs for the local granodiorite intrusion "A" and related subvolcanic dacite porphyry "B" in the study area. 

3. METHODOLOGY 

3.1. Cluster Analysis 

The principle of cluster analysis is that n 
different samples are regarded as n different 
classes, and the two classes with the closest 
properties (or the shortest distance) can be 
merged into the same class. Then, the next two 
classes with the closest properties (or the shortest 
distance), from the n−1 classes, are combined [1]. 
This process continues until all the samples have 
been merged into a single class. The basic 
algorithm steps of cluster analysis are shown 
below [1]: 

In the beginning, each sample is a separate 
class, and the distance matrix between two pairs 
of n classes is calculated, denoted as: 
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1. Find the minimum distance value dij in the 

distance matrix, and denoted as di1j1 , and 
combine the i1 and j1 classes into the n − 1 
class. 
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2. Calculate the distance between class n −1 and 
other classes; 

3. Merge rows i1, j1 in the initial distance 
matrix D0 into a new row, and columns i1, j1 
into a new column, the number of classes is 
reduced by one. We can get the new distance 
matrix D1. 

4. Repeat steps (2) (3) and (4) until n samples 
are clustered into one class. 

5. The clustering process was made into a 
cluster analysis diagram. The original 
samples were screened according to the 
cluster analysis diagram to eliminate the 
samples that did not meet the requirements 
[1]. 

3.2. Factor Analysis 

Factor analysis assumes that relationships 
within a set of variables reflect correlations with a 
smaller number of underlying factors. The main 
applications of factor analytical techniques are to 
diminish the number of variables and to 
distinguish structure in the relationships between 
variables, or to classify them [1]. A special feature 
of this technique is that it extracts factors or 
principal components which are linear 
combinations of all variables that can explain the 
maximum of total variance successively. Thus the 
first factor explains the maximum variance; the 
remaining factors define the maximum of the 
residual variability. The factors extracted are 
uncorrelated or orthogonal to each other. The 
variances extracted by the factors are called the 
eigenvalues. Since the first factor explains 
maximum variance it has the highest eigenvalue. 
The sum of the values of all factors will be equal to 
the total number of variables [1]. 

3.2. Fractal Number-Size (N-S) Model 

Number–size (N–S) method can be utilized to 
describe the distribution of geochemical 
populations. This model shows a relationship 
between desirable attributes and their cumulative 
numbers of samples. A power-law frequency 
model has been proposed to explain the N–S 
relationship according to the frequency 
distribution of elemental concentrations and 
cumulative number of samples with those 
attributes (Daya, 2015a): 

𝑁(≥ 𝜕) = 𝐾𝜕−𝐷 (1) 

where 𝜕 denotes elemental concentration, 
𝑁(≥ 𝜕) denotes the cumulative number of 
samples with concentration values greater than 
or equal to 𝜕, K is constant, and D is the fractal 
dimension of the distribution of elemental 
concentrations. Log-log plots of N(≥𝜕) versus 𝜕 

show straight line segments with different slopes 
−D corresponding to different concentration 
intervals [18]. 

4. STATISTICAL SURVEY OF DATA 

One of the essential steps of each geochemical 
exploration phase is the design of sampling 
network, so, it is necessary to design it with a high 
degree of accuracy. Basically, in the stream 
sediments geochemical exploration, optimal 
sampling is performed to obtain the desired result. 
Considering the aforementioned factors, 192 
geochemical samples were taken from an area of 
49 km2 and the concentration of important 
elements was determined. Stream sediment 
samples of the −80 mesh (0.18 mm) fraction were 
collected from the center of the streams. 
Concentrations of the elements were measured by 
X-ray fluorescence spectrometry (XRF) and 
atomic absorption spectrometry (AAS). 
International standard samples (JSD1, JSD2) and 
replicates were analyzed after every 10 samples 
for checking accuracy and precision. Mean 
deviations between the measured concentrations 
and reference values were less than 10%. Fig. 4 
shows the location of these samples. Table 1 
shows the statistical parameters of selected 
elements of 317 stream sediment samples from 
the Maleksiahkuh region. Preparation and 
chemical analysis of the samples took place. In 
geochemical data extracted from the study area, 
most elements had sensor data. Since the number 
of sensor data in the study area was insignificant 
(less than 10%), the simple replacement method 
was used. In the case of identifying outlier values 
in this paper, it is assumed that the high values are 
anomalous and are not considered outlier values 
and are used in statistical calculations. 

 
Fig. 4. Location of the sediment samples taken in the 

Maleksiahkuh area. 
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Table 1. Statistical parameters of selected elements of 317 stream sediment samples from Maleksiahkuh region 

 
Cr 

(ppm) 
Fe 

(ppm) 
Co 

(ppm) 
Ni 

(ppm) 
Sn 

(ppm) 
Zn 

(ppm) 
Pb 

(ppm) 
Mo 

(ppm) 
Cu 

(ppm) 
As 

(ppm) 

Mean 116.50 2.75 13.50 48.25 2.15 46.20 18.50 1.30 28.10 18.11 

Median 112 2.50 13 49 2 67 10 1.26 25.64 15.94 

Std. 
Deviation 

32.55 1.60 13.95 5.80 0.76 33.52 13.03 0.56 1.64 7.95 

Variance 1059.20 2.50 15.51 33.74 0.58 1127.80 176025 0.31 266.25 63.081 

Skewness 3.971 6.9 6.13 0.167 1.82 -0.30 -0.972 0.55 11.331 1.582 

Kurtosis 32.171 51.90 46.50 1.042 8.75 -1.47 0.60 -0.92 143.4 3.35 

Minimum 50 1.65 9 36 0.75 5 1 0.25 19.55 0.001 

Maximum 342 16.72 48 74 7 106 73 3 273.30 52.12 

A statistical survey on the data of the 
Maleksiahkuh showed that the arsenic, copper, 
molybdenum, zinc, lead, and chromium elements 
are notably higher than their Clark values. Fig. 5 
shows the frequency (histogram) of these 
elements. One of the applications of the Q-Q plot 
diagrams is to evaluate the frequency distribution 
of elements. The closer the curve to the line is, the 

distribution becomes normal. The Q-Q plot for 
these elements is also shown in Fig. 6. From these 
shapes and diagrams, it can be deduced that the 
molybdenum, chromium, and arsenic elements 
have a normal distribution, and lead, copper, and 
zinc elements have no normal distribution. The 
lead and zinc analyses yield histograms showing a 
bimodal distribution. 

 
Fig. 5 .Histogram for arsenic, copper, molybdenum, lead, zinc, and chromium (in ppm or g/t) in the Maleksiahkuh area. 
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Fig. 6. The Q-Q plot for the studied elements. 

In geochemical surveys, important elements of 
the samples are often measured. Since any given 
group of elements exhibits a similar sensitivity to 
specific environmental conditions, recognizing the 
existing genetic correlations between different 
elements can be used to better understand the 
changes in geochemical environments. In 

addition, the genetic accumulation of some 
elements may be used as a direct guide to 
determining the type of deposit that is probably 
present in the area. The correlation coefficients of 
the Pearson method for the main elements of the 
Maleksiahkuh area are presented in Table 2. This 
was done using SPSS 16 software. 

Table 2. Correlation matrix between important elements in the stream sediment of the Maleksiahkuh area 

Ag 1 

As .035 1  

Co .070 .091 1  

Cr .092 .086 .887** 1  

Cu .113 .030 .170* .113 1  

Fe .123 .100 .975** .894** .126 1  

Mn .061 .110 .979** .882** .151* .954** 1  

Mo -.092 -.054 .143* .142 .017 .051 .215** 1  

Ni -.093 -.072 .064 .054 .111 -.089 .074 .596** 1  

Pb -.029 .285** .428** .308** .170* .371** .420** .110 .203** 1  

Sb -.055 .066 .055 .021 .098 .055 .100 .133 .020 .170* 1  

Sn -.072 .246** .234** .148* .119 .214** .226** -.063 .103 .462** .585** 1  

Ti .089 .073 .972** .891** .107 .984** .954** .035 -.070 .363** .046 .226** 1  

Zn -.060 -.022 .334** .269** .101 .201** .405** .752** .691** .243** .059 -.002 .207** 1 

Elements 
(ppm) 

Ag As Co Cr Cu Fe Mn Mo Ni Pb Sb Sn Ti Zn 
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4. DISCUSSION 

It can be concluded from Table 2 that the 
highest positive correlation was observed 
between the manganese and cobalt (the main 
origin is the sea floor) elements, which is about 
0.979, iron with titanium 0.984, and cobalt with 
iron is 0.975.  

A hierarchical cluster analysis was conducted 
for the main elements in the study area. Cluster 
analysis is one of the multivariate methods aimed 
at achieving a criterion for classifying the most 
suitable variables or samples based on more 
internal similarity and more discrepancy between 
groups [1]. In this study, the criterion of the 
correlation coefficient and clustering algorithm is 
the Ward method and Pearson Product (r). The 
results are dendrogram in Fig. 7. As shown in the 
figure, the elements are divided into three 
separate clusters. The first cluster contains the 
elements Fe, Ti, Cr, Co, Mn. These elements are 
hydrophilic and are often placed on the margin of 
mineralization. The second cluster consists of Mo, 
Zn, Ni elements. In the third cluster, the elements 
of As, Sr, Sn, Sb, Pb, Cu, Ag are included. The first 
cluster is not related to mineralization because 
they are hydrophilic and are often placed on the 
margin of mineralization. The third cluster is 
associated with mineralization in post-magmatic 
phases or hydrothermal processes. Hydrothermal 
solutions can be the cause for mineralization. 
Hydrothermal solutions by impregnating the 
embedded rocks can cause mineralization. In total, 
it appears that the third cluster represents a base-
metal mineralization center, and other clusters 
are also associated with mineralization, including 
porphyry Cu-Ag related systems possibly located 
around mineralized systems [27, 2]. 

To determine the accuracy and confirmation of 
factor analysis, the KMO coefficient was 
calculated. The large quantities of this coefficient 
signify confirmation of factor analysis and its 
small values imply that the factor analysis is not 
approved. KMO was 0.74 (> 0.50) which was 
acceptable. By applying factor analysis on the 
values of variables, special values, percentage 
variance, and cumulative percent of variance of 
each factor are calculated separately. The number 
of significant factors revealed that according to the 
scree plot (Fig. 8) and the table of data variances 
obtained from factor analysis (Table 3), the 
number of factors is 6. These six factors justify a 
total of 76.353 percent of environmental change. 

The first factor, in which the elements Cr, Mn, 
Co, Fe, and Ti have the highest eigenvalues, but is 
unrelated to mineralization and is a function of the 
rock composition. The elements of this group are 
almost identical to those of the first cluster of the 
cluster analysis. This factor justifies around 30% 
of the environmental change. The second factor 
includes Ni, Zn, and Mo with high eigenvalues, 
which can justify lithological and mineralogical 
changes in the region. This factor justifies 16% of 
the environmental change and corresponds to the 
second cluster of cluster analysis. The largest 
eigenvalues in the third, fourth, and fifth factors 
belong to the mineralization trace elements. These 
trace elements include As, Sb, Cs, and Sr. In factor 
six, Cu and Ag have the highest weight (copper has 
the highest positive weight, and silver with the 
highest negative weight), which can justify copper 
mineralization and silver dilution. Fig. 9 shows the 
6th-factor score map in the Maleksiahkuh area. 
This map was generated with IDS (Inverse 
Distance Squared) method using RockWorks™ v. 
2006 software package. As shown in the figure, 
copper mineralization in the southwest of the 
region is maximum and dilution is also observed 
in the north-east of the region. 

 
Fig. 7. Dendrogram obtained from the hierarchical cluster 

analysis method in the Maleksiahkuh area. 

 
Fig .8. Scree plot to see the number of factors in the study 

area
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Table 3. Level of variance obtained from factor analysis 

Component 
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 5.310 29.498 29.498 5.310 29.498 29.498 4.969 27.608 27.608 

2 2.888 16.045 45.543 2.888 16.045 45.543 2.515 13.970 41.578 

3 2.101 11.674 57.217 2.101 11.674 57.217 2.017 11.205 52.783 

4 1.285 7.141 64.358 1.285 7.141 64.358 1.617 8.981 61.764 

5 1.109 6.160 70.518 1.109 6.160 70.518 1.479 8.217 69.981 

6 1.050 5.836 76.353 1.050 5.836 76.353 1.147 6.373 76.353 

7 .985 5.471 81.824 - - - - - - 

8 .852 4.732 86.556 - - - - - - 

9 .801 4.453 91.008 - - - - - - 

10 .463 2.574 93.582 - - - - - - 

11 .354 1.967 95.549 - - - - - - 

12 .295 1.641 97.190 - - - - - - 

13 .219 1.218 98.409 - - - - - - 

14 .125 .693 99.102 - - - - - - 

15 .118 .658 99.760 - - - - - - 

16 .021 .119 99.879 - - - - - - 

17 .015 .082 99.961 - - - - - - 

18 .007 .039 100.000 - - - - - - 

Extraction Method: Principal Component Analysis.       

Number-size (N-S) graphs were drawn for 
arsenic, copper, silver, lead, zinc, and chromium 
(Fig. 10). The values of these elements were more 
of their Clark. For this reason, only these six 
elements were examined. As seen in these figures, 
there are different populations for different 
elements. There are five populations for arsenic, 
three for copper, three for molybdenum, six for 
lead, four for zinc, and five for chromium in the 
community. 

There are four enrichment phases for Cu. The 
first and second phases are background. The third 
and fourth populations are Cu anomalies. Copper 
shows multifractal nature in the region. The 
condition of Mo is a little different from copper. As 
cab be seen in the Fig. 10, there are three 
population for Mo. The first and second phases are 
background and the last phases is enrichment 
phases i.e. anomaly. The anomaly maps of these 
elements are depicted in Fig. 11. Extreme 
concentrations of copper in the southwest of the 
region (Fig. 11) are well matched by increasing the 
score of the sixth factor (probable copper 
mineralization) (Fig. 9). This means that the factor 
analysis is valid in the area. Comparing the 
location of this anomaly with the geological map, 
the copper anomaly seems associated with 
intermediate andesite and trachyandesite rocks; 
given that most of the copper mineralization is 
associated with the intermediate masses, this is 
possibly related to PCD. 

Lead, Cr, Cu, and As have a strong anomaly in 
the southeast of the study area. By studying the 
geological map of the study area, it can be said that 
this anomaly is correlated to the sandstone, schist, 
shale, and green siltstones. The greenschist arches 
and belts have always been associated with 
mineralization, and in this area, it can be 
concluded that the host of this mineralization is 
also the same type of greenschist belts. Arsenic 
has scattered anomalies, which is due to its 
traceability. In addition, in some cases, there is a 
good correlation between arsenic anomalies with 
zinc and lead anomalies (Ghorbani 2013; Daya 
2105a). 

 
Fig. 9. Sixth-factor map for the Maleksiahko area. 
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Fig. 10. Number-size (N-S) graphs for arsenic, copper, molybdenum, lead, zinc, and chromium (ppm – g/t). 
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Fig. 11. Map of anomalies of elements based on the Fractal number-size (N-S) model in the Maleksiahkuh area. 

6. CONCLUSIONS 

Geological surveys conducted in the area 
showed that the geological units consist of flysch-
like rocks, including shale, sandstone, mudstone, 
and various types of igneous rocks. The 
sedimentary rocks experienced localized changes 
when they came into contact with intrusive rocks. 
The igneous rocks found in the research site 
comprise andesite, alkaline basalts, and diorite. A 
set of statistical surveys was conducted in the 
Maleksiahkuh area. The findings revealed that the 
concentrations of arsenic, copper, molybdenum, 

zinc, lead, and chromium in this region are higher 
compared to their usual background 
concentrations. Particularly, the concentration of 
chromium in the area was found to be notably 
high, which is possibly attributed to the presence 
of mafic rocks. Furthermore, a Q-Q plot was 
generated to analyze the distribution of these 
elements. The plot indicated that molybdenum, 
chromium, and arsenic followed a normal 
distribution pattern, while lead, copper, and zinc 
displayed a distribution pattern that deviated 
from normality. Multivariate analysis revealed 
that Maleksiahkuh’s manganese and cobalt 
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exhibited the highest correlation at approximately 
0.979, followed by iron and titanium at 0.984, and 
cobalt and iron at 0.975. Cluster analysis was 
carried out in the study area to identify the main 
groups, resulting in three separate clusters. The 
third cluster, consisting of As, Sr, Sn, Sb, Pb, Cu, and 
Ag, was associated with mineralization. The 
variables were subjected to factor analysis, and 
out of the six factors available, the sixth factor with 
Cu and Ag elements had the highest eigenvalues. 
Copper had the highest positive weight, while 
silver had the highest negative weight, indicating 
their importance as mineralization factors. The 
Sixth Factor Score map shows a potential area for 
copper mineralization in the southwest of 
Maleksiahkuh. By using the N-S fractal model, Cu 
anomalies were detected. These copper anomalies 
in the southwest region correspond well with the 
sixth-factor scoring map, indicating probable 
copper mineralization. Therefore, it is 
recommended to conduct more detailed studies 
and collect lithological samples in the northwest 
region. The fractal method and factor analysis 
method showed a strong correlation. The copper 
anomaly aligns with the presence of greenschist 
rocks, which have always been associated with 
mineralization in greenschist belts and arcs. 
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