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Keywords 
  Abstract 

In geomechanical systems, reliability analysis aims to determine 
the failure probability according to the uncertainties existing in 
rock mass properties and support materials, as well as 
diagnosing the significance of each uncertainty. Although there 
are very diverse methods to determine the reliability of 
geomechanical models, the employment of precise methods for 
determining the reliability of a numerical model is practically 
impossible due to computational difficulties. The only general 
solution to solve the reliability problem is to use Monte Carlo 

simulation. However, for most systems, with engineering accuracy, thousands of realizations are required 
to use Monte Carlo simulation. Although this number of realizations for analytical functions can be 
performed very quickly, running this number of realizations for a numerical code is practically impossible. 
In the proposed Nearest Linear Failure Surface method (NLFS), with the least number of runs, the 
reliability of rock space and its failure probability is investigated during a short period of time and with 
appropriate accuracy. The idea of the NLFS method is inspired by finding the design point (β-point in the 
well-known First Order Reliability Method) assuming that the performance function is linear. In this 
research, a computer code has been developed to implement the NLFS method and by combining this code 
with FLAC 2D software, reliability of an underground road tunnel with uncertain cohesion, friction angle, 
and tensile strength of surrounding rock was determined. The results indicate the high efficiency of the 
proposed method in determining the reliability of numerical models in a very short time and with high 
accuracy. 

Reliability analysis 

Numerical models  

Nearest Linear Failure Surface 

Geomechanical stability 

First Order Reliability Method (FORM) 

Monte-Carlo simulation 

1. INTRODUCTION 

Recent developments in the field of computer 
software products and, more importantly, 
numerical models in geomechanics, have 
increased the applications of numerical codes in 
stability analysis of rock spaces. Through these 
developments, geomechanical engineers have 
gained the ability to carry out very advanced 
numerical analyses in a short period and at a low 
cost. The existing commercial programs for 
numerical analyses, while being user-friendly, can 
perform very complicated analyses, such as 
coupled thermo-elasto-plastic analyses. Despite 

this, all the input values of numerical models are 
deterministic, and considering the uncertainties 
and understanding how and the extent of 
uncertainties affect is not possible in a simple 
numerical analysis. Reliability analysis considers 
the effects of uncertainties on geomechanical 
stabilities; additionally, it can quantify them and 
provide more understanding and information 
than deterministic designs. The main goal of 
reliability analysis is to determine the failure 
probability of a system or a model of it.  

In geomechanics, unlike the numerical models, 
reliability analysis of analytical models has been 
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more considered by researchers [1-8]. For 
example, Liu et al. (2021), To determine the 
probability of tunnel face instability, used a novel 
two-stage parameter estimation method based on 
a hybrid-evolution Markov chain Monte Carlo 
(MCMC) algorithm [9]. Using an analytical tunnel 
face stability model in frictional soil and the 
inverse first-order reliability method (FORM), 
Zhang et al. (2024) proposed a new reliability 
analysis framework [10]. Calculation difficulties in 
reliability analysis methods in dealing with 
numerical models can be considered the most 
important reason for the shortage of reliability 
analysis of numerical models. Using Monte Carlo 
simulation with only 50 samplings, You (2005) 
[11] explored the variability effects of rock 
strength parameters, with normal distribution, in 
a FLAC numerical model of a rock tunnel. 
However, the very few numbers of realizations 
reduce the accuracy of the proposed risk analysis 
method. Wile (2006) considered the effect of 
uncertainties on the results of numerical models 
for rock pillar stability.  In his research, Wile used 
the results of back analysis and empirical models 
to assess a representative coefficient of variation, 
representing the variability of the numerical 
results [12]. Assigning random characteristics to 
each numerical element based on random 
distributions of rock properties has also been 
common in some research. Griffiths and Fenton 
[13], dealt with modeling a mine pillar. In their 
numerical model, they determined the mechanical 
characteristics of each element according to 
random distribution of the physical parameters 
and calculated the failure probability of the mine 
pillars using the Monte Carlo simulation. Using the 
Response Surface method, Abdel Massih (2008), 
investigated the reliability of the numerical model 
of a soil foundation (using FLAC3D software) [14]. 
Dadashzadeh et al. (2017) used the response 
surface method for converting the results of slope 
stability numerical simulations to an explicit 
performance function to be used in FORM 
reliability method. However, RMS+FORM methods 
are more efficient than simple Monte Carlo 
simulation, but the accuracy of the method is 
highly dependent on the evaluated surface 
curvature near the design point. Using a 3-D finite 
element limit analysis (FEIA code) and simplified 
First Order Reliability Method (FORM) Ji et al. 
(2021) proposed a reliability-based design of 
tunnel face stability. They also pointed out the 
computational difficulties of the method. Using 
Latin Hypercube Sampling (LHS) as a reliability 
method and a numerical SLIDE2 (Rocscience Inc. 
2018) model for rock slope stability impacted by 
random seismic loading, Zhang et al. (2021) 
calculated the failure probability of rock slopes 

considering the spatial variability of cohesion and 
friction angle. Although the LHS method is more 
efficient than the simple Monte Carlo simulation 
method, it is not accurate for determining very 
small probabilities.  

Exploring the above-mentioned research, it is 
identified that reliability analysis of numerical 
models has been performed mostly for simple 
rock structures (often mine pillars), or by applying 
simple reliability methods with low accuracy. 
Computational difficulties can be considered as 
one of the reasons for this issue and another 
reason is that the accurate solution of reliability 
for complicated numerical models is very time-
consuming. In the new Nearest Linear Failure 
Surface method (NLFS), with the least number of 
runs of numerical codes, the reliability of rock 
space and its failure probability is investigated 
during a short period and with appropriate 
accuracy. In this research, a computer code has 
been developed to implement the NLFS method. 
By combining the mentioned code with FLAC 4.0 
software, the reliability of an underground tunnel 
whose surrounding rock had uncertain cohesion, 
friction angle, and tensile strength was 
determined. The results obtained from the 
implementation of NLFS method on this numerical 
model indicate the significance of cohesion and 
friction angle rather than tensile strength to 
achieve the intended objective for the designed 
tunnel.  

In this study, first, the reliability problem and 
its solving approach are investigated, then, the 
new NLFS method is explained and examined; and 
finally, the NLFS method is executed on one of the 
Iranian road tunnel case examples. The results of 
the implementation of the NLFS method indicate 
its high capability in determining the failure 
probability of rock structure design in a short 
period of time with appropriate accuracy.  

2. RELIABILITY PROBLEM  

A reliability problem is defined as an uncertain 
model. The objective of the reliability analysis is to 
calculate the probability of failure in a system, 
which can be expressed as [15,16]: 

𝑝𝑓 = ∫ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 𝑑𝑥1 𝑑𝑥2 …  𝑑𝑥𝑛

 

𝑃<0

 (1) 

 where 𝑝𝑓 , is the probability of failure, 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛) is a random vector of uncertain 
parameters, 𝑓(𝑋) is the multivariate probability 
density function of the random vector, also known 
as the joint probability density function and 𝑃 is 
the performance function according to Eq. (2): 
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Fig.1. Performance function, probability distribution function, and failure domain of a system with two random variables 
(𝒙𝟏 𝒂𝒏𝒅 𝒙𝟐).

𝑃(𝑋) {
> 0    𝑆𝑎𝑓𝑒 𝑠𝑡𝑎𝑡𝑒
= 0   𝐿𝑖𝑚𝑖𝑡 𝑠𝑡𝑎𝑡𝑒

< 0    𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒

 (2) 

Fig. 1 shows the probability of failure (semi-
infinite domain of integration illustrated by 
shaded region) and concepts of safe, limit, and 
failure states of the performance function (for a 
system with two random variables). In this figure, 
the shaded area indicates the failure domain and 
closed ellipses are the contour lines which 
indicate the multivariate probability distributions 
of two variables. 

In fact, the general problem of reliability (Eq. 
1) is a multiple integration that calculates the 
failure space under a multivariate probability 
distribution curve of the random parameters. It is 
noteworthy that, the space volume under each 
probability distribution curve (univariate or 
multivariate) is a unit, and a fraction of this 
volume, representative of the failure area, is equal 
to the failure probability.   

2.1. Reliability Problem Solutions 

The only general solution to solve the multiple 
integrals of Eq. (1) is to use Monte Carlo 
simulation. Monte Carlo simulation has been 

established based on repeated samplings from 
random parameters according to their 
multivariate probability distribution function and 
generating the realizations of the performance 
function. Failure probability is calculated from the 
ratio between the number of failures, 𝑛𝑓 , to the 

total number of realizations, 𝑛, as follows: 

𝑝𝑓 ≈
𝑛𝑓

𝑛
 (3) 

Monte Carlo simulation estimates the failure 
area by performing numerous random samplings 
in the total space of random data distribution. The 
accuracy of this method depends on the vastitude 
of the failure area and the number of simulations. 
The expected error of the Monte Carlo simulation 
depends on the total number of iterations and the 
real probability of failure. The coefficient of 
variation of the probability, obtained by Monte 
Carlo simulation using N-iterations, is calculated 
as follows [17]: 

𝐶𝑜𝑉𝑝𝑓 = √
1 − 𝑝𝑓

𝑝𝑓 × 𝑁
 (4) 

However, for most systems, with engineering 
accuracy, thousands of realizations are required in 
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order to estimate the failure probability using 
Monte Carlo simulation. Although this number of 
realizations for analytical performance functions 
can be performed very quickly, running this 
number of realizations for a numerical 
performance code, which takes a lot of time to run 
each of the realizations, is practically impossible.  

Since utilizing a general Monte Carlo solution 
to determine the reliability of numerical models of 
rock structures is impossible, using simpler and 
more optimal methods for solving the reliability 
problem is considered. One of the most efficient 
and precise methods for solving reliability 
problems is the First Order Reliability Method 
(FORM). The analytical solution for Eq. (1) is not 
available unless: (I) the multivariable density 
function is normal, and (II) the performance 
function is linear or quadratic [18]. These 
conditions led to the idea of the FORM. Therefore, 
to solve this problem based on the FORM solution, 
a probability-preserving transformation, 𝑋 =
𝑔(𝑍), is assumed so that 𝑍 = (𝑧1, 𝑧2 , … , 𝑧𝑛) is an 
independent standard normal vector (each 
member has a normal distribution with zero mean 
and unit standard deviation). By assuming this 

transformation, the performance function can be 
transmitted to standard normal space spanned by 
standard normal variables, (𝑧1, 𝑧2 , … , 𝑧𝑛), as 
shown in Fig. 2. In this case, the integral of Eq. (1) 
is rewritten as [16]: 

𝑝𝑓 = ∫ 𝑓(𝑋)𝑑𝑋 = ∫ 𝜑(𝑍)𝑑𝑍 

𝑃(𝑔(𝑍))<0𝑃(𝑋)<0

 (5) 

where, 𝜑(𝑍) is the 𝑛 −dimensional standard 
normal density function [19]:  

𝜑(𝑍) =
1

√(2𝜋)𝑛
exp(−0.5𝑍𝑇𝑍) (6) 

The most likely failure point in the standard 
space is called the design point or β-point (𝑍∗ in 
Fig. 2). By replacement of the actual limit state 
(𝑃 = 0) with the approximate linear limit state 
function at the design point (𝑃𝐿 = 0), the 
probability of failure could be approximated by 
[15]: 

𝑝𝑓 ≈ Ф(−𝛽) (7) 

 

Fig. 2. Transformation of performance function. 

where, 𝛽 is the distance between the origin and 
design point in normal space (𝛽 = ‖𝑍∗‖) and Ф is 
the Cumulative Distribution Function (𝐶𝐷𝐹) of 
standard normal variables. Hence, in FORM 
solution, the multiple integration of Eq. (1) 
reduces to a constrained non-linear optimization 
problem as: 

𝛽 = 𝑚𝑖𝑛√𝑍𝑍𝑇   
S.t. 

𝑃(𝑔(𝑍)) = 𝐺(𝑍) ≤ 0,      𝑋 = 𝑔(𝑍) 

(8) 

where, 𝑍 is so-called vector of standard normal 
random variables, 𝑍𝑇  is the transpose of 𝑍, and 𝑔 
is the translation function. The general form of 
translation function for non-correlated random 
variables is defined as [20]: 

𝑥𝑖 = 𝐹𝑖
−1[Ф(𝑧𝑖)] (9) 

where, each non-normal component, 𝑥𝑖 , can 
follow any arbitrary Cumulative Distribution 
Function (CDF), 𝐹𝑖 . 
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It is obvious that solving the non-linear 
optimization problem of Eq. (8) is much easier 
than the multiple integrations of Eq. (1). Despite 
this, for numerical models it is not possible to 
define the performance function (𝑃) analytically. 
Merely, by running the numerical model for a 
network of physical random variables, 𝑋, discrete 
points of the performance function can be 
obtained and a discrete function of the 
performance and or an approximate analytic 
performance function can be achieved. Many of 
the computerized optimization algorithms such as 
the interior point algorithm [21] also, solve the 
optimization problem of Eq. (8) in a similar 
manner. These algorithms depending on the 
complexity of the performance function, 
distribution of random variables, and the accuracy 
required for optimization, carry out some runs of 
the numerical code. Researchers’ experience of 
this paper implies that, for typical geomechanical 
problems, the number of runs in order to achieve 
the optimal answer for Eq. (8) should be between 
tens to hundreds. Although the number of runs 
needed in this method is much less than the Monte 
Carlo solution, the calculation volume and 
therefore the solution time for most numerical 
models are still very high. 

3. NEAREST LINEAR FAILURE SURFACE 

The accuracy of FORM depends on two main 
factors: (a) the number of design points and (b) 
the curvature of transformed performance 
function at the design points [18]. Rackwitz [16] 
applied FORM method to numerous engineering 
systems. He observed that, for more than 90 
percent of the actual systems, FORM method 
fulfills all practical needs and the accuracy of 
FORM is more than sufficient. The reliability 
analysis of analytical models for rock space 
stability using FORM method and comparing it 
with general Monte Carlo simulation and second-
order reliability method (SORM) also implies that 
the accuracy of FORM method is usually very high, 
especially for performances that are monotone 
functions of random variables.  

According to the high accuracy of FORM 
method, it can be assumed that the actual failure 
border in standard normal space (𝑃 = 0 in Fig. 2) 
is very close to the approximate linear failure 
border (𝑃𝐿 = 0 in Fig. 2). Thus, the performance 
could be approximated with a linear polynomial 
precisely and the performance contours (𝑃 = 𝑐𝑡𝑒) 
should be also near to linear state (Schematic Fig. 
6). The mentioned assumption constitutes the 
basis of NLFS method. NLFS method aims to find 
the 𝛽 −point after assuming that the performance 
function in standard normal space is linear. The 

implementation steps of the proposed method are 
presented in Fig. 3 and the flowchart of proposed 
NLFS algorithm is shown in Fig. 4.  

 
Fig. 3. Implementation steps of NLFS method. 

Solution steps of NLFS to determine the 
reliability of numerical model with 𝑛 −random 
variables are as follows:  

Step 1) Guessing an approximate design point 
(𝛽 − point): 𝑍0 = [𝑧1

0, 𝑧2
0, ⋯ , 𝑧𝑛

0], For example, this 
point can be assumed as the origin of coordinates 
(mean value): 𝑍0 = [0,0, ⋯ ,0] 

Step 2) Considering 𝑛 new points as: 𝑍1 =
[𝑧1

0 + 𝑘1, 𝑧2
0, ⋯ , 𝑧𝑛

0], 𝑍2 = [𝑧1
0, 𝑧2

0 + 𝑘2, ⋯ , 𝑧𝑛
0] ,…, 

 𝑍𝑛 = [𝑧1
0, 𝑧2

0+, ⋯ , 𝑧𝑛
0 + 𝑘𝑛], in which 𝑘𝑖  are real 

numbers opposite to zero. In many situations, 
considering the value of 1 for 𝑘𝑖  is suitable; but in 
some situations, different values must be 
considered for 𝑘.  

Step 3) calculating the performance values for 
all 𝑛 + 1 previous point using the transformation 
function and the numerical code:  𝑃0 =
𝐺(𝑍0), 𝑃1 = 𝐺(𝑍1), ⋯ , 𝑃𝑛 = 𝐺(𝑍𝑛)    

Step 4) finding the equation coefficients of 
linear performance function by solving a linear 
system of equations:  

𝑀𝑛+1×𝑛+1𝐴𝑛+1×1 = 𝑃𝑛+1×1 (10) 

which, 𝑀 is a 𝑛 + 1 × 𝑛 + 1 matrix with 𝑖𝑡ℎ row 
is given by (𝑧1

𝑖 , 𝑧2
𝑖 , ⋯ , 𝑧𝑛

𝑖 ,1) or 𝑖𝑡ℎ considered point 
coordinates obtained in steps 1 and 2.  𝐴 is an 𝑛 +
1 column vector containing the unknown 
coefficients of the linear polynomial equation of 
performance function in 𝑛 −dimensional normal 
space: (𝑎1, 𝑎2, ⋯ , 𝑎𝑛 , 𝑎)𝑇. 𝑃 is the 𝑛 + 1 a column 
vector of performances calculated in step 3. Eq. 
(10) is a linear system with widely available 
solutions. By solving this linear system of 
equations and finding the vector 𝐴, the linear limit 
state surface is approximated as: 

𝐿(𝑍) = 𝑎1𝑧1 + 𝑎2𝑧2 + ⋯ 𝑎𝑛𝑧𝑛 + 𝑎 = 0 (11) 
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Step 5) finding the new 𝛽-point (the nearest 
point on the approximated failure surface to the 
center of the coordinates) based on geometric 
rules: 

𝑍0 =
𝑎

|[𝑎1, 𝑎2, ⋯ , 𝑎𝑛]|2
(𝑎1, 𝑎2, ⋯ , 𝑎𝑛) (12) 

Step 6) repeating steps 2 to 5 until 
convergence is reached: the actual value of the 
performance function at the estimated 𝛽 − point 
can be regarded as the error of the 𝛽 − point 
estimation (𝑒𝑟𝑟 = 𝐺(𝑍0)); and calculations will be 
continued until the error reaches to an acceptable 
level. 

 

Fig. 4. The flowchart of proposed NLFS algorithm. 

 
Fig. 5. NLFS loops to find the 𝜷-point of an uncertain rock block. 

 

In Fig. 5, the stages of NLFS method until 
arriving at the 𝛽-point and determining the 

reliability of an actual rock block stability with two 
random variables of joint cohesion and joint 
friction angle have been illustrated. In the solution 
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shown in Fig. 5, all of the 𝑘 values are considered 
as equal to 1 and the number of performance 
function runs is much less than which needed in 
other reliability methods.  

In NLFS method, 𝑘 values should be selected so 
that a unique answer would be obtained for the 
linear system of equations (Eq. 10). In other 
words, in each cycle of NLFS solution, none of the 
performance values from n+1 assumed point 
should be the same as each other's. Otherwise, 𝑘 
values should be changed. To optimize NLFS 
solution, 𝑘 values can be considered 
proportionate to the error value (𝑒𝑟𝑟). In this 
state, by approaching the solution to the actual 𝛽-
point, local tendencies of the performance would 
affect the calculations and the effect of the far field 
tendencies of the performance would be reduced, 
Fig. 6. 

 
Fig. 6. NLFS optimization, by assuming k values 

proportionate to the error value. 

Fig. 7 illustrates the steps of NLFS method with 
𝑘 values equal to "2Ф(𝑒𝑟𝑟) − 1" for the same 
example of Fig. 5. It can be observed that by 
relating the k values to the error value, 
convergence to the final answer occurs rapidly. 

However, it should be noted that due to the 
simplifications made in numerical models, 
considering very small values for k is not possible. 
This is because the possibility of losing the 
uniqueness of the answer for the Eq. 10. 

 
Fig. 7. Optimized NLFS solution considering decreasing 

values for k. 

 Sometimes it is preferable to solve for the 
unknown coefficients of Eq. (10) using regression 
of all previous loop’s points (e.g. 𝑚 points). For 
this purpose, Eq. (10) must be rewritten as 
follows: 

(𝑀𝑇𝑀)𝐴 = 𝑀𝑇𝑃 (13) 

in which, 𝑀 is a m×n+1 matrix with ith row 
given by (𝑧1

𝑖 , 𝑧2
𝑖 , ⋯ , 𝑧𝑛

𝑖 ,1), 𝑀𝑇 is the transpose of 𝑀, 
𝐴 is same as the Eq. (10) and 𝑃 is a m×1 column 
vector of points performances calculated in 
previous steps. Note that Eq. (13) is a linear 
system amenable to fast solutions as well. 

3.1. Case example  

A horseshoe-shaped tunnel has been 
excavated deep in the earth, in a place where the 
vertical stress (maximum stress) is 19 𝑀𝑃𝑎 and 
the horizontal stress (minimum stress) is 15 𝑀𝑃𝑎. 
The shape and geometrical dimensions of this 
tunnel have been illustrated in Fig. 8 and the 
characteristics of the rock mass surrounding the 
tunnel have been provided in Table 1.  

Table 1. Properties of surrounding rock mass. 

Deterministic 
parameters 

value 
Probabilistic 
parameters 

Probability distribution (PDF) 

density 3600 t/m3 Cohesion 
𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

(𝜇 = 0.9, 𝜎 = 0.15) 𝑀𝑃𝑎 > 0 

Bulk modulus 3.2×109 pa Friction 
𝐿𝑜𝑔 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
 (𝜇 = 35°, 𝐶𝑜𝑉 = 8%) 

Shear modulus 1.5×109 pa Tension 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

[0.02 − 0.03] 𝑀𝑃𝑎 
µ: theoretical mean    σ: theoretical standard deviation      CoV: Coefficient of Variation 

 

According to the expected operation for this 
tunnel, the aim for tunnel design is to maintain the 
convergence of the roof and floor limited to the 
permissible level of 12 cm. In order to investigate 
the tunnel’s mechanical behavior, a numerical 

model has been prepared using FLAC 4.0 software. 
The network of elements around the tunnel space, 
the investigated monitored points located in the 
tunnel roof, floor, and walls, and also the tunnel's 
boundary conditions have been shown in Fig. 8. 
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Fig. 8. Tunnel geometry, element network schematic and the boundary conditions of numerical model prepared using FLAC 

4.0 software. 

3.1.1 Deterministic model 

If the tunnel is considered without support, 
and a deterministic model with the mean values of 
random parameters (𝜎𝑡 = 0.025 𝑀𝑃𝑎 and 𝜑 =
35° and 𝑐 = 0.9 𝑀𝑃𝑎) is provided and then run, 
final displacement values for the four investigated 
points on the roof, floor, left and right walls of the 
tunnel (points 2, 3, 4, and 5 in Fig. 6) will be 
obtained according to Table 2. 

Table 2. Tunnel convergence values considering the 
deterministic model with average values of random 

parameters 

Monitored point convergence 

Roof (point 2) 2.48 cm 

Floor (point 3) 7.48 cm 

Right wall (point 4) 3.66 cm 

Left wall (point 5) 3.55 cm 

With regard to the aim of tunnel designing, 
performance function of the tunnel can be defined 
as the Eq. (14).  

𝑃 = 12 − (𝑑3 − 𝑑2) (14) 

where, 𝑑2 and 𝑑3 are considered as the 
displacement of the points on the roof and floor of 
the assumed tunnel in y-axis direction (up) 
respectively and the constant 12cm is the 
maximum permissible roof-floor convergence. 
According to the values of Table 2, the tunnel’s 
performance value without support will be equal 
to 𝑃 = 2.04 𝑐𝑚. Since the performance value in the 
deterministic solution is positive, the assumed 
tunnel (without support) is identified to be 

appropriate in order to achieve the design 
purpose (Eq. 2). 

3.1.2 Reliability analysis using NLFS Method  

In order to solve problems using NLFS method, 
a MATLAB computerized code has been prepared. 
Combining this code with FLAC 4.0 software, 
probabilistic solution of the above-mentioned 
example in a fully automatic way has become 
possible. The basis for NLFS computerized code is 
running the steps 1 to 6 of the NLFS method on 
every input performance function. For 
probabilistic solution of the proposed example, 
tunnel performance function was considered 
according to Eq. (14). On the first cycle of NLFS, 
the 𝛽-point was considered as 𝑍0 = [0,0,0] and 𝑘 
value for each random variable is assumed equal 
to 1. Also, convergence condition of the problem is 
considered as: 𝑒𝑟𝑟 = 𝐺(𝑍0) < 0.05 𝑐𝑚. By 
running NLFS code for the mentioned example, 
the expected convergence condition is met during 
9 calculation cycles.  Final results for solving NLFS 
have been obtained according to Table 3. 

Table 3. NLFS results for tunnel numerical model 

Final β-point (Z*) 
[z(C) = −1.666, z(φ)
= −1.014 , z(Ten) = 0.005] 

Physical β-point  (X*) 
[C = 0.66MPa, φ = 32.17°, Ten
= 0.025MPa] 

err = G(Z∗) +0.02 cm 

Reliability index (β) 1.9458 

Probability of failure (pf) 2.58 % 

No. of loops 9 

No. of FLAC model runs 37 

Calculation Time 2700 sec 
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Therefore, the failure probability for the 
investigated tunnel design is equal to 2.58%. The 
calculations’ run time for this case is a fraction of 
an hour, whilst for the simulation using the Monte 
Carlo method, with acceptable engineering 
accuracy, thousands of iterations of the numerical 
model runs and hundreds of hours are required. 
For comparison, the estimated failure probability 
obtained by Monte Carlo simulation with only 37 
realizations (same as the proposed model), based 
on Equation 4, has a coefficient of variation of 
1.0102 or a standard deviation of 0.02606 
(2.606%). In other words, Monte Carlo simulation 
with only 37 realization estimates the failure 
probability between (0%-10.4%) with an 
accuracy of 99.73% or between (0%-7.79%) with 
an accuracy of 95.45% based on the normal 
distribution properties. Therefore, the number of 
37 Monte-Carlo realizations is completely 
insufficient, and estimated values, with only 37 
realizations, are completely meaningless. 

Design-point (𝛽-point) obtained by this 
method provides much engineering information 
about the rock space status. Every component of 
the 𝛽-point in standard normal space represents 
the extent and the type of each random variable 
impacts on the performance of the rock space. The 
magnitude of each component of the 𝛽-point 
(regardless of its sign) represents the extent of its 
effect on the efficient performance of the rock 
space system. Therefore, in the case example 
discussed here, the cohesion of the rock mass had 
the highest impact on efficient performance or 
non-occurrence of unauthorized convergence of 
the tunnel. The internal friction angle of the rock 
mass is the second important factor in tunnel 
stability, but the tensile strength of the rock mass 
had very insignificant effect on the proper 
performance of the tunnel. Simply put, in the 
present example, the reason why the reliability 
index became large and as a result the failure 
probability for the performance function of the 
tunnel (Eq. 14) became small is in the first order 
due to the probability distribution of rock mass 
cohesion and in the second order is because of the 
friction angle pdf. 

4. CONCLUSION 

In the present research, a new method 
(Nearest Linear Failure Surface, NLFS) has been 
provided for reliability analysis and probability 
investigation for numerical models in 
geomechanics. The new method can be 
generalized for every numerical model with 
different physical variables especially those that 
have positive or negative monotone effects on the 
performance function. In other words, this 

method is more suitable for performances that are 
monotone functions of random variables (e.g. 
mechanical properties of rock support and water 
pressure in rock stability). On the contrary, it is 
not very suitable for performances that are non-
monotone functions of random variables (e.g. joint 
orientation in rock block stability). 

The proposed method, in addition to numerical 
models, is also significantly useful for highly 
complex performance functions and reduces the 
reliability analysis time to a great extent.  

The presented method is a very 
straightforward solution for the First Order 
Reliability Method (FORM) which has been 
underpinned by assuming the performance 
function to be linear in standard normal space. 
This method achieves an estimated design point 
(𝛽-point) by running n+1 samples of the 
numerical code, and improves 𝛽-point 
approximations by repeating the solution chain.  

The probabilistic stability of a horseshoe-
shaped tunnel was analyzed using NLFS method. 
Solution results represent the failure probability 
of this tunnel and the effect of each random 
variable on the tunnel performance. The solution 
time was a fraction of an hour while determining 
the precise failure probability by Monte Carlo 
simulation requires tens or hundreds of hours.  

Although the presented method and other 
existing reliability analysis methods carry out the 
probability investigation of a model considering 
the effect of physical uncertainties, these methods 
cannot consider the effect of the simplifications 
and uncertainties existing inherent in numerical 
models. In other words, simplifications and 
uncertainties existing in a numerical model are the 
common weaknesses of both deterministic and 
probabilistic analyses.  
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