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Application of Fractal modeling for mapping Hydrothermal Alteration 

Zones Using ASTER imagery in southeastern of IRAN 

Keywords  Abstract 
This study presents an integrated approach to map hydrothermal 

argillic alteration zones using ASTER satellite imagery in the Jebal 

Barez region of southeastern Iran. The novelty of this research lies 

in the combination of Spectral Angle Mapper (SAM), Matched 

Filtering (MF), and fractal value–area modeling for anomaly 

detection and classification. After atmospheric correction using the 

IARR method, kaolinite spectral signatures were extracted and used 

in the SAM and MF techniques to delineate altered zones. A total of 34 ground control points were 

collected across representative lithologies to validate remote sensing outputs.  Both SAM and MF 

identified key alteration zones, with MF demonstrating higher classification accuracy (82.35%) compared 

to SAM (73.52%). The fractal model enabled effective separation of anomalous zones by detecting scale-

invariant spatial patterns and extracting critical breakpoints. The integration of fractal modeling with 

spectral analysis provided improved anomaly delineation and exploration targeting. Field validation 

confirmed the presence of Pb–Zn mineralization and silica-rich alteration in high-response zones. This 

methodology offers a replicable framework for mineral exploration in complex terrains using freely 

available remote sensing data. A detailed workflow chart is also proposed to enhance clarity and 

reproducibility. 
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1- Introduction 

The concept of fractals, introduced by Mandelbrot in 

the 1980s, describes self-similar patterns that remain 

consistent across different scales. Fractal geometry 

enables the analysis of complex natural shapes 

beyond the scope of classical Euclidean geometry [1]. 

Building on this, multifractals describe systems 

governed by a multifractal spectrum [2–6] and are 

widely applied to scale-invariant phenomena [7]. 

Numerous geological processes—such as 

mineralization, sedimentation, volcanism, and 

landform evolution—exhibit self-similarity and are 

well-modeled using fractal and multifractal 

approaches [6, 8–9], making fractal analysis a 

valuable tool in geoscience [10–11]. In mineral 

exploration, fractal-based techniques (e.g., box-

counting, number-size, radial density, concentration–

area (C–A), concentration–distance (C–D), and local 

singularity models) help delineate geochemical and 

geophysical anomalies while preserving key spatial 

and statistical properties [12–21]. 

In remote sensing, spectral classifiers such as the 

Spectral Angle Mapper (SAM) are widely used to 

identify alteration minerals associated with 

mineralization by comparing pixel spectra to known 

reference spectra [22–24]. Similarly, the Matched 

Filter (MF) method enhances mineral mapping by 

maximizing the signal-to-noise ratio with respect to 

specific spectral endmembers [25–26]. 

This study focuses on the identification and 

delineation of hydrothermal alteration zones in a part 

of southeastern Iran, specifically within the Jebal 

Barez region. ASTER satellite imagery was utilized 

in combination with two widely recognized spectral 

analysis methods: the Spectral Angle Mapper (SAM) 

and Matched Filter (MF). These techniques were 

applied to detect argillic alteration zones indicative of 

potential mineralization. To enhance the 

interpretation and spatial characterization of 

alteration intensity, the results were further analyzed 

using the value–area fractal model, which enables 

quantitative classification and prioritization of 

alteration zones for mineral exploration purposes. 

Despite the proven utility of spectral methods in 

alteration mapping, the integration of fractal models 

for enhancing spatial analysis and anomaly detection 

remains underexplored, particularly in the Jebal 

Barez region. This study aims to fill this gap by 

applying a value–area fractal approach to quantify 

alteration intensity derived from ASTER-based 

spectral classification, thereby improving mineral 

target delineation. The main objective is to integrate 

SAM and MF outputs with fractal modeling to 

enhance spatial analysis of alteration zones and 

validate results through field sampling and 

petrographic studies. 

2- Study Area 

The study area is located in southern Kerman 

Province, Iran, approximately 45 km northeast of the 

city of Jiroft, between 57°58′36″–58°04′07″ E and 

28°44′32″–28°49′09″ N (Fig. 1). It lies within the 

southeastern segment of the Urmia–Dokhtar 

magmatic arc, a subduction-related belt formed by the 

convergence of the Arabian and Iranian plates. This 

magmatic arc, comparable to Andean-type systems, 

is composed of extensive volcanic and intrusive rocks 

[27–30]. 

The regional geology includes two primary 

lithological units: 

 The Ert unit, consisting of volcanic and 

pyroclastic rocks such as rhyolitic 

pyroclasts, basaltic andesites, and 

agglomerates, is predominantly observed in 

the northern part of the study area. 

 The Gd unit comprises granitic to quartz 

dioritic intrusive rocks that have intruded 



 

3 

into Eocene formations across the northern 

and southern regions. 

Additionally, dyke-like intrusions (unit d), ranging 

from diorite to quartz diorite in composition, crosscut 

the older units and are typically concentrated around 

major intrusive bodies (Fig. 2). 

From an economic perspective, the region hosts lead–

zinc mineralized veins rich in chalcopyrite, 

sphalerite, and galena. These veins occur primarily 

within andesitic and pyroclastic rocks and are 

structurally controlled, often associated with iron 

oxide mineralization—indicative of hydrothermal 

processes and a favorable environment for mineral 

exploration. 

3- Data and Methods 
The Advanced Space borne Thermal Emission and 

Reflection Radiometer (ASTER) is a multispectral 

imaging sensor widely utilized in geological 

applications. It provides 14 spectral bands across 

three subsystems: VNIR (3 bands, 15 m), SWIR (6 

bands, 30 m), and TIR (5 bands, 90 m). This study 

employed Level 1T (L1T) ASTER imagery (scene 

AST_L1T_00306172007065639, acquired on June 

17, 2007), pre-processed with radiometric, geometric, 

and topographic corrections. Atmospheric correction 

was applied using the Internal Average Relative 

Reflectance (IARR) method.

 

Fig.1. Geographical location and access routes of the study area. 

 

Fig.2.: The case study is located in the southeast of Urmia-Dokhtar volcanic belt and the Kerman copper. 
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Additionally, ASTER is equipped with a backward-

looking VNIR telescope that provides 15 m stereo 

imagery [31]. 

This study utilized Level 1T (L1T) ASTER imagery, 

which includes radiometric, geometric, and terrain 

corrections. The specific scene analyzed was 

AST_L1T_00306172007065639, acquired on June 

17, 2007.  

Radiometric correction was conducted using the 

IARR (Internal Average Relative Reflectance) 

method within ENVI software. This technique 

normalizes image spectra by internal averaging, 

minimizing the impact of atmospheric and 

topographic effects — especially important in arid, 

high-relief regions like southeastern Iran. 

To investigate the spectral characteristics of alteration 

minerals, field samples were collected and analyzed. 

The spectral signatures of kaolinite—an indicator of 

argillic alteration—were extracted for use in the 

Spectral Angle Mapper (SAM) and Matched Filtering 

(MF) techniques. Following alteration mapping, a 

fractal-based analysis was applied to separate 

anomalous zones from the geologic background. 

Ground validation was performed through field 

observations and sample analysis to assess the 

accuracy of classification results for both SAM and 

MF. Atmospheric correction was conducted prior to 

processing using the Internal Average Relative 

Reflectance (IARR) method. 

3-1- Spectral Characteristics of Argillic Alteration 

Kaolinite, a principal indicator of argillic alteration, 

exhibits distinct absorption features in the SWIR 

region. These include a strong absorption band near 

2.2 µm and a weaker one at 2.15 µm, both associated 

with Al-OH vibrations. A notable absorption around 

1.4 µm is also linked to OH-stretching modes [32] 

(Figure 3). 

3-2- Alteration Mapping Using Spectral Angle Mapper 

(SAM) 

The Spectral Angle Mapper (SAM) is a widely 

adopted technique in remote sensing for mineral 

exploration [33–34]. It quantifies spectral similarity 

by calculating the angle between a target pixel’s 

spectrum and a reference spectrum in n-dimensional 

space. Both spectra are treated as vectors, and their 

angular relationship is measured using the following 

formula: 

cos 𝑎 =
∑ 𝑡𝑖 . 𝑟𝑖
𝑛𝑏
𝑖=1

∑ 𝑡𝑖
2𝑛𝑏

𝑖=1 . ∑ 𝑟𝑖
2𝑛𝑏

𝑖=1

 (1) 

where tᵢ and rᵢ are the reflectance values of the target 

and reference spectra in band i. SAM produces two 

outputs: a rule image showing the spectral angle for 

each pixel (lower angles = better match), and a 

classification image based on user-defined 

thresholds. 
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Figure 3. Spectral profile of kaolinite (0.4–2.5 µm) with resampled bands corresponding to 

ASTER sensor wavelengths (adapted from USGS spectral library). 

3-3- Alteration Mapping Using Matched Filtering (MF) 

The Matched Filtering (MF) method is used to 

estimate the presence of specific target endmembers 

in mixed pixels [35]. It enhances the spectral response 

of the target while suppressing background noise, 

effectively maximizing the signal-to-noise ratio. MF 

generates fraction images for each target endmember, 

with grayscale pixel values ranging from 0 to 1—

where 1 represents a perfect spectral match and 0 

indicates no similarity [36]. 

3-4- Rationale for Method Selection and Modeling 

Strategy 

SAM and MF were selected due to their proven 

effectiveness in identifying hydroxyl-bearing 

alteration minerals such as kaolinite and alunite. 

SAM measures spectral similarity by calculating the 

angle between image and reference spectra, while MF 

enhances the target spectral response by suppressing 

background interference. 

In this study, kaolinite spectra from the USGS 

spectral library were resampled to match ASTER 

bands and used as reference. For SAM, classification 

thresholds were empirically set at 0.1 radians after 

trial runs to minimize false positives. MF outputs 

were thresholded using statistical cutoffs derived 

from histogram analysis of fraction images (mean + 

1.5σ). 

Following spectral classification, the fractal value–

area model was applied to quantify the spatial 

distribution of alteration intensities. This model plots 

the cumulative area above a given pixel value versus 

the pixel value itself on a log–log scale, revealing 

linear segments that correspond to distinct geospatial 

regimes. Breakpoints in these plots were determined 

visually and statistically using slope-change 

detection, and used to classify pixels into background, 

weak, and strong anomalies. 

The MF and SAM grayscale outputs served as input 

images for fractal modeling, enabling a hierarchical 

classification based on spatial complexity. This 

integration improved the identification of discrete 

alteration zones and supported prioritization of field 

validation targets. 

 

Figure 4: Workflow of the research methodology 

applied in this study 

4- Results and discussion  

To assess the performance of the SAM and MF 

techniques, spectral match outputs were thresholded 

based on histogram analyses. For SAM, an angular 

threshold of 0.1 radians was applied to highlight areas 

of strong spectral similarity with kaolinite. For MF, 

pixel values above 0.45 (mean + 1.5σ) were 

considered indicative of probable alteration. 

Visual comparison between Figures 5a and 5b reveals 

broader coverage by SAM, identifying generalized 

alteration halos, whereas MF shows higher spatial 

contrast and more localized high-intensity zones. This 

difference reflects SAM's sensitivity to broad spectral 

features and MF's ability to suppress background 

noise and highlight pure endmembers. 

The SAM and MF techniques were implemented 

using reference spectra from the United States 

Geological Survey (USGS) spectral library. Both 

methods successfully identified hydrothermal 

alteration zones, which were subsequently verified 
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through field observations. Significant argillic 

alteration was concentrated in the southern and 

southeastern sectors of the Jebal Barez region. These 

zones were characterized by intense clay alteration 

and the presence of iron oxides, as illustrated in 

Figures 5 and 6.  

Field investigations confirmed that mineralization in 

these altered zones primarily occurs as siliceous veins 

enriched in lead and zinc, with galena and sphalerite 

identified as the main ore minerals. 

As shown in Figure 5a and 5b, both MF and SAM 

successfully delineated argillic alteration zones, with 

the MF technique offering more localized and high-

contrast outputs. The fractal value–area plots in 

Figure 5c confirm the presence of scale-invariant 

patterns within the mapped data. Identified 

breakpoints at values 81 and 156 (MF), and 95 and 

184 (SAM), effectively separate background from 

anomalous regions. Figure 6 demonstrates strong 

spatial agreement between high-response alteration 

zones (red pixels) and field-verified Pb–Zn 

mineralization sites, particularly in the southern 

sector. Sampling points coincide with MF and SAM 

anomalies, validating the spectral results. 

Fractal value–area plots were generated by ranking 

pixel values and plotting cumulative area versus value 

on a log–log scale. Breakpoints were identified 

visually and numerically as inflection points where 

slope changes occur, indicating transitions between 

background and anomaly regimes. 

For MF (Figure 5c), breakpoints at pixel values 81 

and 156 effectively delineated low-, medium-, and 

high-intensity alteration. Similarly, SAM-derived 

values at 95 and 184 (Figure 5d) reflect consistent 

spatial trends. These thresholds were subsequently 

used to reclassify output maps for interpretation. 

The findings are consistent with previous studies in 

Iran and other regions with similar geological 

settings. For instance, Tangestani et al. (2008) 

reported effective alteration mapping using ASTER 

in the Shahr-e-Babak region, but without employing 

fractal analysis. Similarly, Afzal et al. (2011) applied 

C–A fractal models for porphyry Cu systems but 

relied on geochemical data. Our integration of 

SAM/MF with value–area fractal modeling 

represents a novel contribution by enabling anomaly 

separation directly from remote sensing outputs, 

offering both spatial precision and scalability. 

Compared with previous ASTER-based alteration 

mapping in SE Iran (e.g., Tangestani et al., 2008) and 

fractal applications primarily in geochemical 

domains (e.g., Afzal et al., 2011), our approach 

integrates fractal value–area analysis directly with 

SAM/MF outputs. This yields objective, reproducible 

thresholds for anomaly separation and improves 

target prioritization without requiring additional 

ancillary datasets. 

Petrographic observations (sericitic/argillic overprint, 

iron-oxide veining, silica enrichment) are consistent 

with SWIR absorption features detected for kaolinite-

bearing alteration, supporting both SAM halos and 

MF high-contrast centers. The spatial coincidence 

between mapped high-value pixels and hand-

specimen/mineralogical evidence strengthens the 

interpretation of argillic alteration zones as validated 

targets. 
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Figure 5: (a) Argillic alteration zones derived from Matched Filtering (MF). (b) Argillic alteration zones mapped using the  

Spectral Angle Mapper (SAM). (c) Value–area fractal plots for MF and (d) SAM outputs. 
 

 

Figure 6: Detailed field photographs and petrographic views of six representative ground control 

points (GCPs) selected from the total set of 34 samples. These samples were chosen to reflect a 

variety of lithologies and alteration intensities. Overlay of alteration zones (value = 255) from (a) 

MF and (b) SAM techniques with field data including sampling sites and Pb–Zn mineral 

occurrences. 

5- Accuracy assessment 
In this study, a total of 34 ground control points 

(GCPs) were collected across different lithologies 

and alteration zones for validation. Six representative 

samples (Figure 6) were selected for detailed 

petrographic and spectral examination because they 

a b 

c d 

a b 
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cover the range of alteration intensities and 

lithological contexts observed in the field. The 

locations of all 34 GCPs are shown in Figure 7. This 

approach allows in-depth discussion of typical 

alteration patterns while ensuring that the accuracy 

assessment incorporates the full validation set. 

 

Figure 7: Spatial distribution of ground control sampling 

points within the study area. 

To validate the remote sensing results, a field survey 

was conducted to verify zones of argillic alteration, 

iron oxide staining, and kaolinite occurrences visually 

identified in ASTER imagery. Ground-truth 

observations were used to assess the performance of 

the SAM and MF classification methods by 

comparing pixel-based predictions with field data 

(Figures 8 and 9). The Matched Filtering (MF) 

method achieved an overall classification accuracy of 

82.35%, while the Spectral Angle Mapper (SAM) 

achieved 73.52% accuracy, as presented in Table 1. 

The classification accuracy was assessed by 

comparing remote sensing outputs (SAM and MF) to 

field-verified control points. Confusion matrices were 

constructed, and overall accuracy was calculated. The 

MF method yielded 82.35% accuracy (28/34 correct 

predictions), while SAM achieved 73.52% (25/34). 

These results indicate higher spatial precision for MF 

in mapping argillic alteration. The observed 

misclassifications were primarily in transitional 

zones, suggesting potential spectral mixing or sub-

pixel heterogeneity. Further field validation involved 

petrographic analysis of representative rock samples 

collected from selected alteration zones. Two key 

samples are described below: 

To further validate the alteration zones identified 

through remote sensing, selected rock samples were 

prepared as thin sections and analyzed under a 

polarizing microscope. Two representative samples 

are described below, highlighting key mineralogical 

features and hydrothermal alteration signatures. 

Figure 8 highlights a significant variation in the 

spatial distribution of alteration zones derived from 

SAM and MF. MF (Figure 8a) isolates more compact 

and high-contrast alteration centers, while SAM 

(Figure 8b) maps broader and less distinct halos. 

These differences emphasize MF’s higher specificity 

and SAM’s broader sensitivity. This complementarity 

suggests the potential benefit of integrating both 

outputs in a hybrid decision-support system for 

exploration. 

Petrographic analysis confirmed the presence of 

alteration minerals such as sericite, epidote, and 

kaolinite in samples collected from mapped 

anomalous zones. These minerals correspond with 

absorption features detected in the SWIR bands of 

ASTER, validating the spectral approach. The spatial 

overlap between altered outcrops and high-value 

pixels in MF and SAM maps supports the robustness 

of the classification framework. Some limitations 

affect the accuracy assessment. First, field sampling 

was constrained by terrain accessibility, potentially 

biasing spatial coverage. Second, spectral confusion 

due to overlapping mineral features may result in 

classification errors. Third, weathering effects and 

vegetation may obscure alteration signatures in some 
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zones. These factors should be considered when 

extrapolating results to broader regions.  

 

 

 

Figure 8: (A, B) Outcrops of argillic alteration observed in dioritic and granodioritic rocks in the southeastern part of the 

study area. 
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Figure 9: (C, D) Iron oxide vein networks formed within argillic alteration units, with vein thicknesses ranging from 1 to 10 

cm. (E) Iron oxide outcrop in andesitic rocks located in the northern to central parts of the study area. (F) Argillic alteration 

outcrop observed in diorite, located in the central sector. 
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Figure 10: Silica-rich veins with visible galena and Pb–Zn mineralization in the northern part of the study area, providing 

ground evidence in support of remote sensing results. 

Table 1: The overall accuracy for SAM and MF methods in detecting hydrothermal alterations 

Method MF Method SAM 

Predict class Predict class 

Other 6 Other 9 

Argillic 28 Argillic 25 

total 34 total 34 

Accuracy Assessment% 82.35 Accuracy Assessment% 73.52 

To further validate the alteration zones identified 

through remote sensing, selected rock samples were 

prepared as thin sections and analyzed under a 

polarizing microscope. Two representative samples 

are described below, highlighting key mineralogical 

features and hydrothermal alteration signatures 

5-1- Sample 1: Altered and Silicified Quartz-

Monzogranite 

This sample exhibits a poikilitic texture and intense 

hydrothermal alteration. The mineral assemblage 

includes sericitic, argillic, epidotic, and phyllic 

alteration types, indicative of prolonged fluid-rock 

interaction. Major mineral components include 

quartz, alkali feldspar, and plagioclase. 

 Plagioclase (~35%): Euhedral to subhedral 

tabular crystals (0.5–1.5 mm), extensively 

altered to sericite, clay minerals, epidote, 

and other phyllosilicates. 

 Quartz (~15%): Subhedral grains 

approximately 1 mm in size. 

 Alkali feldspar (~25%): Strongly altered to 

sericite and clay; crystal size ranges from 0.3 

mm to >1 mm. 

 Pyroxene (<10%): Occurs as scattered 

subhedral grains (<1 mm), often associated 

with iron oxide  
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Figure 11:  Photomicrograph of Sample 1 showing altered plagioclase (sericitic and argillic), subhedral 

quartz, and pyroxene grains with evidence of iron oxide overprint. 

5-2- Sample 2: Altered Volcanic Rock 

This sample is interpreted as an altered intrusive 

volcanic unit with porphyritic to massive texture. The 

rock has undergone significant hydrothermal 

overprinting, characterized by sericitic, argillic, and 

local epidotic alteration. 

 Plagioclase: The dominant phase, appearing 

as subhedral crystals (>1 mm), moderately 

to intensely altered by sericite and clay 

minerals. 

 Epidote: Present in localized zones, 

suggesting multiphase fluid evolution. 

 Quartz and alkali feldspar (~35%): 

Subhedral grains ranging from 0.3 mm to >1 

mm. 

 Siliceous veining: Composed of subhedral 

quartz, cross-cutting the matrix and 

indicative of late-stage silica mobilization. 

 

Figure 12: Photomicrograph of Sample 2 showing altered plagioclase (sericitic and argillic), semi-

formed quartz crystals, and quartz-rich veinlets. 
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6- Summary and Conclusions  

This study successfully delineated hydrothermal 

argillic alteration zones in the Jebal Barez region 

through an integrated approach combining ASTER 

satellite imagery, spectral classification (SAM and 

MF), and fractal value–area modeling. 

SAM and MF both identified key altered zones, with 

MF achieving a higher accuracy (82.35%) in pixel-

level classification compared to SAM (73.52%). 

Fractal modeling revealed scale-invariant spatial 

patterns and allowed threshold-based classification of 

anomalies, improving interpretation of alteration 

intensity. 

Field validation, including petrographic analysis of 

representative samples, confirmed the presence of 

kaolinite, iron oxides, and Pb–Zn mineralization in 

high-response areas. The strong spatial correlation 

between mapped anomalies and ground evidence 

underscores the effectiveness of the integrated 

methodology. 

While SAM offered broader coverage of alteration 

halos, MF provided greater sensitivity to pure mineral 

signatures. Their combined use enhances both 

detection and spatial refinement of anomalies. 

Despite the promising results, certain limitations 

remain. ASTER’s moderate spatial resolution may 

limit the detection of small or narrow alteration 

features. The fractal model relies on empirical 

breakpoint selection, which may introduce 

subjectivity. Future research should explore 

integration with hyperspectral data and machine 

learning-based anomaly detection to enhance 

predictive performance and reduce uncertainty. 
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