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Keywords 
  Abstract 

Roadheader machines have good efficiency and flexibility in 
mechanized tunneling and underground mining. The application of 
Roadheaders increases the speed of excavation in the tunnels, which 
dramatically reduces the time and cost of the project. Considering 
the importance of this issue, this study aims to predict and optimize 
the penetration rate and excavation speed of Roadheaders using the 
particle swarm algorithm in Parvadeh No. 1 mechanized coal mine. 

Therefore, in this study, the characteristics of Roadheaders have been investigated in related studies. All 
of these studies were divided into two parts: field observations and laboratory tests. In this research, 
tunnel number one is considered as the case study, which is divided into 30 parts/sections, and in each 
section, rock core/sample preparation, the number of joints along the tunnel, excavation time, and volume 
of the excavated rock mass under the Roadheader machine operation were measured. In the laboratory 
studies section, the rock core was analyzed by the uniaxial compression strength (UCS) test, and finally, a 
database was provided based on the obtained results. In the following, nonlinear and linear regression 
models were used to select the best model for estimating the instantaneous cutting rate (ICR) of the 
Roadheader machine, which expresses the advancing rate of excavation. In these models, parameters 
including rock quality designation (RQD) of rock mass, tensile strength (σt), UCS, rock mass brittleness 
index (RMBI), pick consumption index (PCI), pick consumption factor (PCf), and specific energy (SE) were 
selected as input variables, and ICR was selected as the output variable. By comparing the results, the linear 
regression model had the highest determination coefficient and performance index, and the lowest root 
mean square error. Therefore, this model was selected as the most suitable model. In order to optimize 
ICR, the relationship obtained from the linear regression model was implemented in the particle swarm 
algorithm. The results showed that to obtain the optimal limit of ICR in the considered case study with a 
UCS of 1.68 MPa and a RQD of 33.09%, ICR is equal to 33.11 cubic meters per hour. 
 

Performance prediction 

Roadheader 

Nonlinear and linear regression 

Coal mine 

Particle Swarm Optimization 

1. INTRODUCTION 

Mechanized tunneling systems can be a 
suitable alternative to the traditional method of 

mining operations because they can be performed 
more precisely and faster at a lower cost, and 
produce more productive output [1]. In addition, 
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with the application of the mechanized method, 
the maintenance and the required manpower are 
reduced. Due to new developments and 
enhancements to increase the performance and 
reliability of drilling machines, miners who use 
mechanized excavation systems have a larger 
share of the mineral products market [2, 3]. Some 
of the more important factors in mechanized 
excavation are the prediction of costs and 
completion time of the project, which depend on 
the performance of the machine and its efficiency. 
Predicting the performance of the machine will 
have a direct effect on the speed of production and 
ultimately the profitability of excavation projects 
[4, 5]. 

Generally, the factors affecting the 
performance of excavation operations can be 
classified into four main categories which are 
described in the following. 

A– Rock material parameters consist of 
compressive and tensile strength, hardness 
percent, abrasive minerals (quartz), type of 
texture and matrix of rock, elastic behavior, and 
rock energy properties such as rigidity index 

B– Rock mass parameters such as the joint 
inclination, joint spacing, direction of 
discontinuities, junctions, groundwater, fault 
areas, position of the frontier, general 
classification of the rockmass, maintenance 
requirements, and field stress [6, 7]. 

C- Machine characteristics, including weight, 
power, machine forces, type of drum cutter, 
arrangement of cutting tools, and support system 
capacity. 

D- Operation parameters consisting of shape, 
size, inclination, and length of excavation, path arc, 
drilling arrangement, acceleration operations, 
number of rock formations in the tunnel path, site 
management method, and work scheduling, which 
is the number of work shifts per day [8-11]. 

A combination of these parameters specifies 
the speed of excavation operation and the capacity 
of the machine production in a rockmass [12]. In 
this research, we attempt to present a model 
predicting the performance of a Roadheader 
based on geomechanically parameters of rock and 
drilling machine characteristics in a fully 
mechanized coal mine in Parvadeh No. 1 mine. 

2. GENERAL STATUS AND CHARACTERISTICS 
OF PARVADEH NO. 1 COAL MINE OF TABAS 

Tabas's city is located in the northeast of Yazd 
Province, Iran. Figure 1 shows the plan of 
Parvadeh No. 1. The thickness of the main coal 
zone is approximately 100 m, including five coal 
seams called B1, B2, C1, C2, and D which have the 

applicable thickness. Among these layers, the 
three layers C1, B2, and B1 are extractable 
economically. Coal seams are accessed by four 
diagonal tunnels with an inclination of 14 degrees. 
The mechanized longitudinal longwall method is 
used to extract the coal seams. In this mine, the 
Roadheader machine has been applied to develop 
the excavations such as roadways, slopes, cross-
cuts [13, 14]. 

 
Fig. 1. The Tabas Parvadeh No. 1 coal mine [14]. 

In tunnel No.1 of the mine, four road-header 
machines were used excavation operation (Fig. 2). 
The model of these machines is DOSCO MD1100. It 
should be noted that in this mine, drilling and 
blasting systems are used in the conditions of 
existing hard rock formations (sandstone). The 
Roadheader machine is ranked among the 
lightweight to medium-weight machines. 
According to the application levels in British 
charcoal mines, this Roadheader is an ideal device 
for the extraction of mixed layers. Table 1 shows 
the main characteristics of the machine. [15, 16]. 

 
Fig. 2. A view of the Roadheader machine with axial 

excavation method in coal mines of Tabas [17]. 
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Table 1. Observation performed in 30 tunnel sections 

Roadheader characteristics Unit Value 

Car length mm 8066 

Main body height of the machine mm 1860 

Body width of the machine mm 2500 

Boom rotation angle degree 45 

Cutting height maximum mm 4700 

Cutting width maximum m 6160 

Machine weight ton 34 

Cutting slice speed rpm 32-58 

Movement speed 
m per 

sec 
1.18 

Conveyor width mm 615 

3. INVESTIGATING THE PERFORMANCE OF 
ROADHEADER MACHINE 

Road headers are generally suitable for low to 
medium-strength rocks. There is no direct 
relationship between the machine and the tunnel 
shape. The cross-section of the tunnel excavated 
using this machine can be different. The tunnel 
surface is directly available at any time because 
these machines directly affect the bottom of the 
tunnel; it should have sufficient load capacity [18, 
19]. 

Researchers have developed a lot of 
relationships to determine the infiltration rate of 
Roadheaders. Bilgin and colleagues presented Eq. 
(1) for the instantaneous cutting rate (ICR) for 
various transverse and axial Roadheaders [1]. 

𝐼𝐶𝑅 = 9.07𝐿𝑛(𝑅𝑀𝐵𝐼) + 29.93 (1) 

where RMBI is the Rock mass brittleness index. 
This is calculated by Eq. (2) [1]. 

𝑅𝑀𝐵𝐼 = 𝑒(
𝜎𝑐
𝜎𝑡

) × (
𝑅𝑄𝐷

100
)

3

 (2) 

In Eq. (2), σc is uniaxial compressive strength 
of intact rock; σt is the tensile strength of the intact 
rock, and RQD is the rock quality designation of 
rockmass. RQD of the rock mass is one of the most 
important factors affecting the performance of the 
Roadheader. In this study, this parameter is 
evaluated by Eq. (3) presented by Prest and 
Hudson [22]. 

𝑅𝑄𝐷 = 100𝑒−0.1𝜆(0.1𝜆 + 1) (3) 

In Eq. (3), λ is the number of joints along the 
exaction strike/line. Using RMBI, we can calculate 
the pick consumption index (PCI) of Roadheader 
as the Eq. (4) [1]. 

𝑃𝐶𝐼 =  𝑒𝑅𝑀𝐵𝐼  × (
𝑈𝐶𝑆

𝑃
) (4) 

In Eq. (4), UCS is the uniaxial compressive 
strength of the rock and P is the power of the 
digger, which is equal 84 KW. The pick 
consumption factor is a function (PCF) of PCI, 
which is calculated by Eq. (5) [1]. 

𝑃𝐶𝐹 = 45.67(𝑃𝐶𝐼)−0.16   (5) 

The specific energy (SE) for the Roadheader is 
a function of σc, which can be calculated by the 
following equation: [1]. 

SE= 0.123𝜎𝑐 + 0.97 (6) 

4. PSO ALGORITHM (PARTICLE SWARM 
OPTIMIZATION) 

PSO (Particle Swarm Optimization) is an 
optimization method that can be used to deal with 
problems whose answers are a point or a surface 
in n-dimensional space. In this space, the 
assumptions are discussed, an initial speed is 
allocated to them, and communication channels 
are considered between particles. Then, these 
particles move in the space of the reaction, and the 
results are calculated based on a merit criterion 
after each period. Over time, particles tend to 
accelerate toward particles with a higher degree 
of merit and are in the same communication 
group. Despite the fact that every method works 
well in a range of issues, this method has been 
successful in solving continuous optimization 
problems. Using this algorithm, we can optimize 
the Roadheader progress rate [21]. There are four 
steps for PSO algorithm, which are mentioned in 
the following: 

(1) Creating a critical mass and evaluating it; 

(2) Determining the best personal memories and 

the best collective memories; 

(3) Updating the speed and position; 

(4) If the stop conditions are not met, go to step 1 

otherwise, it will end. 

The termination conditions of this algorithm 
are as follows: 

1) To reach an acceptable response rate, 

2) The number of repetitions, 

3) The number of repetitions passed without a 

certain improvement in the result, and 

4) Completing a certain number of responses [18]. 

Particle deformation in this algorithm is based 
on the experience of the particles and the rest of 
the particles. Particles tend to experience the best 
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position and direction that they themselves or 
other neighbors have taken in the past. In general, 
it can be stated that the behavior and position of 
the rest of the particles on the hair are influenced 
by a small particle to achieve successful particles. 
Modeling PSO is also based on the search for 
successful particle swarming points, which has 
transformed PSO into a social search algorithm 
[19]. 

Particles attempt to gain the best position in 
the search space with respect to the memory of 
their experiences and knowledge and their 
collective intelligence. Particles compete to gain 
the best position over the rest of their neighbors 
[19]. 

5. DATA COFLLECTION 

Database was created based on the data 
collected through the field and the laboratory, 
which are described in the following: 

A- Field observations: In this section, the 
tunnel considered as the case study was divided 
into 30 parts along the tunnel strike and in each 
section, the rock core sampling work was carried 
out using a machine tool. In each section, three 
rock cores with a diameter of 54 mm were drilled. 
Simultaneously, the number of joints in the tunnel 
was counted along a withdrawal line. The number 
of joints in these 30 sections recorded between 22 
to 26. During the Roadheader operation, the time 
and volume were also measured for excavating 
each section (Table 2). 

B- Laboratory tests: The rock cores drilled in 
the tunnel were examined in the laboratory under 
a point load test to calculate the UCS and tensile 
strength. The height of the rock samples was 27–
53 mm, and their diameter was 54 mm in all tests. 

Many methods can be used to obtain tensile 
and compressive strength, one of which is the use 
of a point test. Point load testing is performed on 
small pieces of rock called cores[21]. Based on the 
described process to create the database, the 
required data was collected. In this regard, data 
about parameters, including the type of rock, 
excavating volume, time, number of joints per unit 
length, and RQD are presented in Table 2. Table 3 
illustrates the data of point load index, 
compressive strength, and tensile strength of the 
rock. In the following, the amounts of RMBI, PCI, 
PCF, SE, and ICR were determined and the results 
are presented in (Table 4). 
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1 Argillite 23.4 60 25 28.73 

2 Silt-stone 22.5 54 24 30.84 

3 Silt-stone 22.8 89 20 40.60 

4 Argillite 25 49 22 35.46 

5 Argillite 24.6 81 25 28.73 

6 Argillite 25.2 57 24 30.84 

7 Silt-stone 22.6 70 24 30.84 

8 Silt-stone 22.7 62 22 35.46 

9 Silt-stone 23.2 69 24 30.84 

10 Argillite 26.4 64 24 30.84 

11 Silt-stone 22.9 86 23 33.09 

12 Silt-stone 22.4 45 23 33.09 

13 Silt-stone 23.1 67 22 35.46 

14 Silt-stone 24.2 56 20 40.60 

15 Argillite 25.7 58 22 35.46 

16 Argillite 24.9 38 22 35.46 

17 Argillite 26.1 67 25 28.73 

18 Silt-stone 23.2 65 24 30.84 

19 Silt-stone 23.7 54 20 28.73 

20 Coal 29.9 62 26 26.74 

21 Silt-stone 24.2 74 23 33.09 

22 Silt-stone 23.8 80 24 30.84 

23 Silt-stone 26.1 39 20 40.60 

24 Coal 28.4 55 26 26.74 

25 Silt-stone 22.3 69 23 33.09 

26 Silt-stone 22.9 73 23 33.09 

27 Argillite 25.6 49 25 28.73 

28 Argillite 26.7 52 24 30.84 

29 Silt-stone 23 67 22 35.46 

30 Silt-stone 22.8 82 22 35.46 
 

 

 

 

 



 

 

Faramarz et al. ANM Journal, Vol. 15, No. 45, Winter 2026 

 

5 

Table 3. Calculations of the point load index, compressive 
resistance and tensile resistance of samples 
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1 4.20 43.10 2.26 2.11 50.73 2.03 0.94 

2 4.90 43.65 2.15 2.10 50.49 2.02 0.98 

3 20.89 46.92 2.22 2.16 51.78 2.07 1.07 

4 5.11 58.65 1.48 1.59 38.16 1.53 1.09 

5 5.02 55.64 1.62 1.70 40.79 1.63 0.99 

6 4.73 49.07 1.95 1.93 51.63 2.07 0.94 

7 4.12 43.10 2.30 2.15 51.19 2.05 1.02 

8 4.93 52.46 1.79 1.83 43.90 1.76 0.96 

9 4.74 46.18 2.22 2.14 51.41 2.06 0.94 

10 4.31 43.89 2.23 2.10 50.47 2.02 0.95 

11 4.37 44.66 2.19 2.08 49.97 2 1.03 

12 5.01 53.75 1.73 1.79 42.89 1.72 1.04 

13 5.05 55.02 1.66 1.73 41.59 1.66 1.01 

14 5.01 51.13 1.91 1.93 46.30 1.85 1.07 

15 5.21 58.06 1.54 1.65 39.53 1.58 0.95 

16 4.33 44.66 2.17 2.06 49.50 1.98 0.96 

17 4.55 45.43 2.20 2.11 50.57 2.02 1.08 

18 5.99 59.81 1.67 1.81 43.44 1.74 1.04 

19 5.81 55.02 1.92 2.00 48.11 1.92 0.94 

20 3.01 43.10 2.18 2.04 48.94 1.96 1.00 

21 4.45 50.45 1.74 1.75 41.93 1.68 1.00 

22 4.33 79.67 1.74 1.74 41.67 1.67 1.62 

23 5.02 54.39 1.6 1.76 42.12 1.68 1.04 

24 3.02 43.10 1.99 1.86 44.67 1.79 0.94 

25 6.01 60.38 1.64 1.79 42.85 1.71 1.09 

26 4.02 44.66 2.01 1.91 45.85 1.83 0.95 

27 4.34 51.80 1.61 1.64 39.26 1.57 1.02 

28 3.99 43.89 2.07 1.95 36.85 1.87 0.94 

29 4.01 46.18 1.88 1.81 43.53 1.74 0.96 

30 5.23 53.11 1.85 1.90 45.62 1.82 1.03 

 

 

Table 4. Calculation of the instantaneous drilling rate 
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1 1.69 3.27 37.78 7.21 34.79 

2 2.1 4.91 35.41 7.18 36.66 

3 4.88 81.14 22.60 7.34 44.31 

4 3.02 9.31 31.96 5.66 39.95 

5 1.47 2.11 40.52 5.99 33.42 

6 2.01 4.59 35.79 7.32 36.26 

7 2.05 4.73 35.61 7.27 36.44 

8 3.03 1.82 31.20 6.37 39.98 

9 2.02 4.61 35.76 7.29 36.31 

10 2.08 4.81 35.52 7.18 36.57 

11 2.55 7.62 33.00 7.12 38.42 

12 2.44 5.86 34.42 6.25 38.02 

13 3.38 14.54 29.76 6.09 40.98 

14 4.95 77.81 22.75 6.66 44.44 

15 3.2 12.38 30.53 5.83 40.68 

16 1.76 14.46 29.79 7.06 40.48 

17 2.04 3.50 37.38 7.19 35.06 

18 1.8 3.98 36.62 6.31 36.40 

19 1.36 3.46 37.44 6.89 35.26 

20 2.5 2.27 40.06 6.99 32.72 

21 2.04 6.08 34.21 6.13 38.24 

22 5.17 3.82 36.86 6.10 36.40 

23 1.3 88.21 22.30 6.15 44.83 

24 2.76 1.95 41.04 6.46 32.31 

25 2.75 8.06 32.71 6.24 39.14 

26 2.71 8.54 32.40 6.61 39.11 

27 1.22 2.58 39.23 5.80 34.80 

28 2.26 5.14 35.15 6.73 37.16 

29 3.42 13.50 30.11 6.32 40.65 

30 1.69 16.60 29.13 6.58 41.08 
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6. STATISTICAL SURVEY OF THE VARIABLES 

In this study, descriptive statistics were used to 
predict the instantaneous drilling rate of 

inferential statistics (including correlation 
coefficient and multivariate regression). 
Descriptive statistics of considered 
variables/parameters are presented in Table 5. 

Table 5. Descriptive statistics of all 30 excavated sections in the considered advancing tunnel 

Number Parameter Indication Mean Minimum Maximum Standard deviation 

1 instantaneous cutting rate ICR 21.17 20.54 36.29 3.85 

2 Rock quality designation RQD 14.33 13.75 24.75 6.038 

3 Tensile strength 𝜎𝑡 0.09 0.59 0.663 0.173 

4 
Uniaxial comprehensive 

strength 
UCS 22.31 5.35 16.71 4.36 

5 Rock mass brittleness index RMBI 4.34 1.09 2.214 1.028 

6 Pick consumption index PCI 24.44 0.44 3.476 6.309 

7 Pick consumption factor PCF 57.34 26.71 42.76 6.8363 

8 Specific energy SE 2.95 1.33 3.210 0.52 

 

7. PREDICTION OF ICR USING LINEAR AND 
NON-LINEAR REGRESSIONS 

The main purpose of regression analysis is to 
obtain a mathematical relationship between one 
or more independent and dependent variables. 
Therefore, in the regression analysis, in addition 
to the correlation between the independent 
variables and the dependent variable being 
investigated, the type and form of the 
mathematical relationship are also determined 
[20-21]. In this study, in all linear and nonlinear 
regression models, the parameters of ICR, σt, σc, 

RQD, PCI, PCF, and SE were selected as input 
variables and instantaneous infiltration rate as 
output variable. 

7.1. Linear Regression 

In this study, to predict ICR, the correlation 
between independent and dependent variables 
was determined by Pearson’s correlation 
coefficient (Table 6). Indeed, the correlation 
coefficient shows the severity of the linear 
relationship and the type of direct or inverse 
relationship between the independent and 
dependent variables. 

Table 6. Pearson correlation coefficient matrix for parameters affecting the instantaneous drilling speed 

Row Variables ICR RQR 𝜎𝑡  UCS RMBI PCI PCF SE 

1 ICR 1 0.036- 0.213 0.221 0.975 0.719 0.934- 0.220 

2 RQD -0.036 1 0.362 0.366 0.640- 0.188- 0.028 0.365 

3 𝜎𝑡  0.213 0.362 1 1 0.176 0.199 0.432- 1 

4 UCS 0.221 0.366 1 1 0.182 0.122 0.438- 1 

5 RMBI 0.975 0.064- 0.176 0.180 1 0.831 0.930- 0.182 

6 PCI 0.719 0.188- 0.119 0.117 0.831 1 0.784- 0.122 

7 PCF -0.934 0.028 0.435- 0.435- 0.930- 0.784- 1 0.438- 

8 SE 0.220 0.365 1 1 0.182 0.122 0.438 1 

 

To predict ICR, a multiple linear regression 
model was used with a simultaneous login method 
in which all independent variables were analyzed 
simultaneously. To perform linear regression, 
from 30 excavated sections in the tunnel, 22 
sections were adopted for modeling, and 8 
sections were selected for testing models. Based 
on these calculations, the linear regression 
equation for modeling was obtained as Eq. (7). 

𝐼𝐶𝑅 = 115.07 + 0.229(𝑅𝑄𝐷) − 17.837(𝜎𝑡)
− 26.53(𝑈𝐶𝑆)
− 7.47(𝑅𝑀𝐵𝐼)
+ 0.034(𝑃𝐶𝐼)
− 1.84(𝑃𝐶𝐹) + 6.82(𝑆𝐸) 

(7) 

To secure linear regression, the assumption of 
independence of errors, normal errors, and the 
linearity of independent variables should be 
tested. The Watson Camera Test can be used to 
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study the independence of errors. If the value of 
this statistic is in the range of 1.5–2, the 
assumption of the independence of errors can be 
considered. In addition, if the co-linear ratio is 
high in a regression equation, there is a high 
correlation between the independent variables. 
Therefore, despite the high coefficient of 
determination, the regression model may not have 
high credibility. The existence of this phenomenon 
can be examined by controlling the variance 
inflation factor (VIF) and tolerance. If VIF is more 
than 10 and the tolerance is less than 0.1, linearity 
between the independent variables is probable. If 
the VIF value is greater than 30, it indicates a 
serious problem. The coefficients of the regression 
model for the variables of research and control of 
the co-linear statistics of the model variables are 
shown in Table 7. The values of the VIF and table 
tolerance show that there is no coincidence 
between the variables included in this study. 

Error frequency distribution charts and 
homogeneity of variances can also be plotted (Fig. 
3). By comparing the error distribution diagram 
with the normal distribution diagram, it was found 
that the error distribution is almost normal 
because the mean value is close to zero and the 

standard deviation is less than one. Regarding the 
homogeneity diagram of variances, a standardized 
dispersion curve of standardized residues versus 
fitting values shows the optimal state because the 
residues are randomly dispersed in a horizontal 
bar around a zero residual value (Fig. 4). Table 7 
presents the statistical characteristics of the 
regression, analysis of variance, and regression 
coefficients. In Table 8, the ratio of F is 73.669 and 
is significant at the level of 0.001. Table 8 shows 
the statistical characteristics of the regression and 
variance analyses used to predict instantaneous 
drilling rates. The Durbin–Watson test is a test for 
examining the autocorrelation between residuals 
in structural and regression models. The Durbin–
Watson statistic ranges from 0 to 4. If there is no 
sequential correlation between the residuals, the 
value of this statistic should be close to 2. If it is 
close to zero, it indicates a positive correlation, 
and if it is close to 4, it indicates a negative 
correlation. In general, if this statistic is between 
1.5 and 2.5, it indicates favorable results [20]. 
Given that the Durbin–Watson statistic obtained is 
a number between 1.5 and 2.5, it therefore 
indicates favorable statistical results, and also 
because it is close to 2, it indicates positive 
correlation. 

Table 7. Regression coefficients and their tests 

Linear statistics p-value t-value 

Standard 
coefficients 

Non-standard coefficients 
Model 

Beta Error level B 

Tolerance VIF 0.00 9.65 ----- 11.92 115.07 Fixed 

0.132 3.34 0.00 4.25 0.265 0.540 2.229 Qualitative Index of Rock Mass 

0.379 3.33 0.00 3.25 -1.02 0.23 -17.837 Compressive resistance 

0.533 4.45 0.007 -2.96 -1.38 8.95 -26.53 Tensile resistance 

0.467 2.09 0.00 -6.98 -2.31 1.07 -7.47 Index of rock mass fracture 

0.178 1.67 0.001 4.02 0.246 0.009 0.034 Blade consumption index 

0.190 1.48 0.00 -9.67 -2.78 0.191 -1.84 Blade consumption factor 

0.550 2.22 0.030 2.31 1.09 2.95 6.82 Special energy 

 
Fig. 3. Frequency distribution chart of errors. 

 
Fig. 4. Chart of homogeneity variances. 
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Table 8. Statistical characteristics of regression and variance analysis for predicting ICR 

Model summary 

R R2 
Converted to 

R2 
Standard error 

Estimation 
Watson camera 

statistic  
0.999 0.999 0.982 0.510 2.09 

Variance analysis ANOVA 

Changes 
source 

Sum of squares 
Freedom 

degree 
Mean of squares Significance level F level 

Regression 313.26 7 52.23 0.00 231.01 

Remaining 0.266 23 0.021 - - 

Total 313.69 30 - - - 

 

7.2. Multiple Nonlinear Regressions 

In many cases, a linear model is used to 
determine the relationship between the 
independent and dependent variables. In fact, the 
relationship between variables is not always 
linear and may be non-linear. Therefore, in this 
study, the previous data were also fitted with 
polynomial, power, and exponential nonlinear 
models, which are discussed below [21]. 

A: Polynomial Nonlinear Regression  

After the analysis, a polynomial model was 
used to predict the ICR of the road-header with a 
R-square (R2) of 0.994 as Eq. (8). 

𝐼𝐶𝑅 = 46.170 + 0.051(𝑅𝑄𝐷) − 61.176(𝜎𝑡)2

+ 0.005(𝑈𝐶𝑆)3

+ 0.013(𝑅𝑀𝐵𝐼)4

− 4.317(𝑃𝐶𝐼)5

− 4.906(𝑃𝐶𝐹)6

− 0.001(𝑆𝐸)7 

(8) 

B: Power nonlinear regression 

In this case, a nonlinear power regression 
model was used to forecast the ICR of the 
Roadheader with a R2 of 0.997, as shown in Eq. (9). 

𝐼𝐶𝑅

= 10
[1.540−1.867(𝑅𝑄𝐷)−0.237(𝜎𝑡)+0.002(𝑈𝐶𝑆)+

0.039(𝑅𝑀𝐵𝐼)−0.002(𝑃𝐶𝐼)−0.003(𝑃𝐶𝐹)+0.060(𝑆𝐸)] 
(9) 

C: Exponential nonlinear regression 

A nonlinear exponential regression model was 
used to predict ICR of the Roadheader with a R2 of 
0.998, as shown in Eq. (10). 

𝐼𝐶𝑅 = 𝑒𝑥𝑝 (−0.845 + 0.197(𝜎𝑡)−0.062

− 1.047(𝜎𝑡)0.716

+ 0.076(𝑈𝐶𝑆)0.280

+ 1.566(𝑅𝑀𝐵𝐼)0.156

+ 1.064(𝑃𝐶𝐼)−0.041

+ 1.972(𝑃𝐶𝐹)−0.518

+ 1.113(𝑆𝐸)0.439) 

(10) 

The relationship between the predicted values 
of ICR and the values measured by different 
models for the test data can be seen in Figures 4 to 
6. 

 
Fig. 4. Relationship ICR and its predicted values achieved 

by polynomial function (R2=0.994). 

 

 
Fig. 5. Relationship between ICR and its predicted values 

achieved by exponential function (R2=0.998). 

 

 
Fig. 6. Relationship between ICR and its predicted values 

achieved by power function (R2=0.998). 
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8. SELECTING BEST MODEL FOR ALGORITHM 
POS 

To evaluate the performance of different 
models, compare them, and choose the best 
model, R2, square root mean square of errors, 
mean absolute percentage error (MAPE), and VAF 
are determined for each model. The results show 
that there is a good relationship between the 
instantaneous drilling rate of the Roadheader and 
the predicted value of the parameters with a very 
high R2 of the exponential functions model (R2 = 
0.998). To select the best model for estimating the 
drilling rate of the Roadheader machine, based on 
nonlinear and linear regression models, the linear 
regression model with the highest R2, i.e., the value 
(R2=0.999) was selected. To obtain the best model 
among 30 sections, we selected and calculated 8 
sections for the predicted value and 22 sections 
for the measured value. Table 9 shows the best 
model for the PSO algorithm based on the 
determined effective factors. 

Table 9. Selection of the best model for the PSO algorithm 
based on the determined effective factors 

Model 2R RMSE MAPE VAF 

Linear regression 0.999 0.612 0.07212 99.80 

Nonlinear 
regression of 

polynomial function 
0.994 0.985 0.07717 86.1 

Nonlinear 
regression of power 

function 
0.997 0.885 0.07814 87.1 

Nonlinear 
regression of 

exponential function 
0.997 0.945 0.07316 88.1 

9. OPTIMIZATION OF ICR USING THE 
ALGORITHM PSO (PARTICLE MASS 
OPTIMIZATION ALGORITHM) 

Selecting the appropriate input parameters is 
an important part of evolutionary intelligence 
algorithms and analytical models. Using the 
analysis of the main components, we can 
determine the parameters affecting a physical 
phenomenon. In this research, the input and 
output parameters for 30 considered sections as 
the case study are RQD, UCS, σt, RMBI, PCI, PCF, SE, 
as input parameters, and ICR as the output 
parameter. 

To model the issue, all the values of the 
parameters must be recorded so that they can be 
called up from the function when needed. At this 
stage, the definition and implementation of the 
initial values are performed as shown in Figure 8. 

In this section, we specify the target function, 
the number of unknown variables, the structure of 
the unknown variables, and the upper and lower 
limits of the variables. The relationship obtained 

from the linear regression model was used to 
predict the ICR in the PSO algorithm. The linear 
regression model was implemented several times 
with parameter variations. This trend continued 
until the algorithm reached the appropriate 
convergence. The target function is ICR. According 
to Figure 7, the results of the PSO algorithm show 
that to obtain the optimum level of the target 
function for a rock section with a σc of 51.78 MPa 
and a RQD of 33.09%, ICR of the Roadheader is 
equal to 36.41 m3/h. In Figure 8, the horizontal 
axis represents the number of function 
evaluations or NFEs. 

 

 

Fig. 7. Modeling of input parameters for optimization of 
the considered tunnel. 

 

 

Fig. 8. Output of optimization issue of ICR of Roadheader 
as a diagram. 

10. ANALYZING THE SENSITIVITY OF THE 
NEURAL NETWORK MODEL USING THE COSINE 
FIELD METHOD 

Sensitivity analysis is the study of the effect of 
output variables on the input variables of a 
statistical model. In other words, it is a way to 
change the inputs of a systematic statistical model 
that can predict the effects of these changes in the 
output of the model. The cosine field method is 
used to determine the ratio between the involved 
parameters. In this section, the intensity of the 
relationship between the ICR and the input 
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parameters is determined. The results are 
illustrated in Table 10. 

Table 10. Analysis of the sensitivity of the input parameter 
model to the instantaneous drilling rate using the cosine 
field method 

Input parameter 

Sensitivity 
level to the 

instantaneous 
drilling rate 

Qualitative index of rock mass (%) 0.999 

Tensile resistance (MPa) (σt) 0.996 

Single-axial compressive resistance of 
the rock (UCS) (MPA) 

0.997 

Fragility index of the rock mass (RMBI) 0.995 

Partition consumption index (PCI) 0.995 

Partition consumption factor 
(PCF)(m3/pick) 

0.997 

Specific energy (SE) (MJ/M3) 0.992 

As shown in Figure 9, σt, UCS, RQD, and PCF are 
the most important parameters affecting ICR. In 
addition, the influence of RMBI is relatively strong. 
Parameters such as SE and PCI are more sensitive 
to input parameters than ICR. 

 

Fig. 9. Intensity level of the instantaneous drilling rate 
relationship with each input parameter. 

According to Table 10, the results were 
analyzed by SPSS Software to measure the 
intensity level of ICR relationship with each of the 
input parameters. 

The effective parameters in determining ICR 
for the case study were evaluated by cosine field 
sensitivity analysis, which are as follows: 

A: The computational error rate is almost zero, 
indicating that the trained network has reached 
the desired convergence. 

B: The rate of advancement for these tunnels 
from the input parameters is strongly influenced 
by the geomechanically properties of the rock. 

11. CONCLUSION 

This research presented a model to predict the 
performance of Roadheader machine in 
underground coal mines based on characteristics 

and geotechnical parameters of rock. In this 
regard, a case study including 30 sections along a 
tunnel in Parvadeh No. 1 underground coal mine 
was taken to account. Analyses were performed 
based on linear regression and nonlinear 
regression, and the ANF system to predict 
instantaneous cutting rate (ICR) of Roadheader. 
Based on the introduced approach, prediction of 
ICR in various geotechnical conditions is available 
for tunnels and roadways in underground coal 
mines. The prediction was conducted using the 
neural network and PSO algorithm. The best linear 
regression model was selected according to the 
performance evaluation methods. To achieve the 
best model made by the neural network, the 
coefficient of determination (R2), performance 
index, root mean square error, and mean absolute 
error percentage were used. Finally, to select the 
best model for estimating ICR, the linear 
regression system has a better estimation and 
higher accuracy than nonlinear regression. The 
mean squared error for the linear regression 
model is less than that for the other two models, 
and the correlation coefficient in linear regression 
is greater than that in nonlinear regression. This is 
while linear regression has a determination 
coefficient R2 = 0/999, and this value has 
tremendous reliability. Finally, by inserting the 
linear regression results in the PSO algorithm, it is 
shown that to obtain the optimum target function 
for the rock mass transfer with a UCS of 1.68 MPa 
and RQD of 33.09%, ICR of the Roadheader equals 
33.11 cubic meters per hour. Considering specific 
energy (SE) as an important parameter in 
determining the drilling rate, so this parameter 
should be considered for determination of ICR. 
Here, the results of the algorithm show that for 
34.21 of the consumable partition, SE should be 
6.15 MJ/m3. 
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