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Keywords Abstract

Performance prediction Roadheader machines have good efficiency and flexibility in

Roadheader mechanized tunneling and underground mining. The application of
Roadheaders increases the speed of excavation in the tunnels, which

Nonlinear and linear regression dramatically reduces the time and cost of the project. Considering

Coal mine the importance of this issue, this study aims to predict and optimize

the penetration rate and excavation speed of Roadheaders using the
particle swarm algorithm in Parvadeh No. 1 mechanized coal mine.
Therefore, in this study, the characteristics of Roadheaders have been investigated in related studies. All
of these studies were divided into two parts: field observations and laboratory tests. In this research,
tunnel number one is considered as the case study, which is divided into 30 parts/sections, and in each
section, rock core/sample preparation, the number of joints along the tunnel, excavation time, and volume
of the excavated rock mass under the Roadheader machine operation were measured. In the laboratory
studies section, the rock core was analyzed by the uniaxial compression strength (UCS) test, and finally, a
database was provided based on the obtained results. In the following, nonlinear and linear regression
models were used to select the best model for estimating the instantaneous cutting rate (ICR) of the
Roadheader machine, which expresses the advancing rate of excavation. In these models, parameters
including rock quality designation (RQD) of rock mass, tensile strength (ot), UCS, rock mass brittleness
index (RMBI), pick consumption index (PCI), pick consumption factor (PCf), and specific energy (SE) were
selected as input variables, and ICR was selected as the output variable. By comparing the results, the linear
regression model had the highest determination coefficient and performance index, and the lowest root
mean square error. Therefore, this model was selected as the most suitable model. In order to optimize
ICR, the relationship obtained from the linear regression model was implemented in the particle swarm
algorithm. The results showed that to obtain the optimal limit of ICR in the considered case study with a
UCS of 1.68 MPa and a RQD of 33.09%, ICR is equal to 33.11 cubic meters per hour.

Particle Swarm Optimization

1. INTRODUCTION mining operations because they can be performed
more precisely and faster at a lower cost, and

Mechanized tunneling systems can be a ; L
§ ¥ produce more productive output [1]. In addition,

suitable alternative to the traditional method of


http://anm.yazd.ac.ir/

Prediction and Optimization of Roadheader Performance ...

with the application of the mechanized method,
the maintenance and the required manpower are
reduced. Due to new developments and
enhancements to increase the performance and
reliability of drilling machines, miners who use
mechanized excavation systems have a larger
share of the mineral products market [2, 3]. Some
of the more important factors in mechanized
excavation are the prediction of costs and
completion time of the project, which depend on
the performance of the machine and its efficiency.
Predicting the performance of the machine will
have a direct effect on the speed of production and
ultimately the profitability of excavation projects
[4, 5].

Generally, the factors affecting the
performance of excavation operations can be
classified into four main categories which are
described in the following.

A- Rock material parameters consist of
compressive and tensile strength, hardness
percent, abrasive minerals (quartz), type of
texture and matrix of rock, elastic behavior, and
rock energy properties such as rigidity index

B- Rock mass parameters such as the joint
inclination, joint spacing, direction of
discontinuities, junctions, groundwater, fault
areas, position of the frontier, general
classification of the rockmass, maintenance
requirements, and field stress [6, 7].

C- Machine characteristics, including weight,
power, machine forces, type of drum cutter,
arrangement of cutting tools, and support system
capacity.

D- Operation parameters consisting of shape,
size, inclination, and length of excavation, path arc,
drilling arrangement, acceleration operations,
number of rock formations in the tunnel path, site
management method, and work scheduling, which
is the number of work shifts per day [8-11].

A combination of these parameters specifies
the speed of excavation operation and the capacity
of the machine production in a rockmass [12]. In
this research, we attempt to present a model
predicting the performance of a Roadheader
based on geomechanically parameters of rock and
drilling machine characteristics in a fully
mechanized coal mine in Parvadeh No. 1 mine.

2. GENERAL STATUS AND CHARACTERISTICS
OF PARVADEH NO. 1 COAL MINE OF TABAS

Tabas's city is located in the northeast of Yazd
Province, Iran. Figure 1 shows the plan of
Parvadeh No. 1. The thickness of the main coal
zone is approximately 100 m, including five coal
seams called B1, B2, C1, C2, and D which have the
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applicable thickness. Among these layers, the
three layers C1, B2, and B1 are extractable
economically. Coal seams are accessed by four
diagonal tunnels with an inclination of 14 degrees.
The mechanized longitudinal longwall method is
used to extract the coal seams. In this mine, the
Roadheader machine has been applied to develop
the excavations such as roadways, slopes, cross-
cuts [13, 14].

Fig. 1. The Tabas Parvadeh No. 1 coal mine [14].

In tunnel No.1 of the mine, four road-header
machines were used excavation operation (Fig. 2).
The model of these machines is DOSCO MD1100. It
should be noted that in this mine, drilling and
blasting systems are used in the conditions of
existing hard rock formations (sandstone). The
Roadheader machine is ranked among the
lightweight to medium-weight machines.
According to the application levels in British
charcoal mines, this Roadheader is an ideal device
for the extraction of mixed layers. Table 1 shows
the main characteristics of the machine. [15, 16].

Fig. 2. A view of the Roadheader machine with axial
excavation method in coal mines of Tabas [17].
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Table 1. Observation performed in 30 tunnel sections

Roadheader characteristics Unit Value
Car length mm 8066
Main body height of the machine mm 1860
Body width of the machine mm 2500
Boom rotation angle degree 45
Cutting height maximum mm 4700
Cutting width maximum m 6160
Machine weight ton 34
Cutting slice speed rpm 32-58
Movement speed msgfr 1.18
Conveyor width mm 615

3. INVESTIGATING THE PERFORMANCE OF
ROADHEADER MACHINE

Road headers are generally suitable for low to
medium-strength rocks. There is no direct
relationship between the machine and the tunnel
shape. The cross-section of the tunnel excavated
using this machine can be different. The tunnel
surface is directly available at any time because
these machines directly affect the bottom of the
tunnel; it should have sufficient load capacity [18,
19].

Researchers have developed a lot of
relationships to determine the infiltration rate of
Roadheaders. Bilgin and colleagues presented Eq.
(1) for the instantaneous cutting rate (ICR) for
various transverse and axial Roadheaders [1].

ICR = 9.07Ln(RMBI) + 29.93 (1)

where RMBI is the Rock mass brittleness index.
This is calculated by Eq. (2) [1].

agc 3
RMBI = e(58) x (%) (2)

In Eq. (2), oc is uniaxial compressive strength
of intact rock; ot is the tensile strength of the intact
rock, and RQD is the rock quality designation of
rockmass. RQD of the rock mass is one of the most
important factors affecting the performance of the
Roadheader. In this study, this parameter is
evaluated by Eq. (3) presented by Prest and
Hudson [22].

RQD = 100e~%'(0.11 + 1) (3)

In Eq. (3), A is the number of joints along the
exaction strike/line. Using RMBI, we can calculate
the pick consumption index (PCI) of Roadheader
as the Eq. (4) [1].
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UCS) @)

— RMBI
PCl = e x( P
In Eq. (4), UCS is the uniaxial compressive
strength of the rock and P is the power of the
digger, which is equal 84 KW. The pick
consumption factor is a function (PCF) of PCI,
which is calculated by Eq. (5) [1].

PCF = 45.67(PCI)~%1¢ (5)

The specific energy (SE) for the Roadheader is
a function of oc, which can be calculated by the
following equation: [1].

SE= 0.1230, + 0.97 (6)

4. PSO ALGORITHM (PARTICLE SWARM
OPTIMIZATION)

PSO (Particle Swarm Optimization) is an
optimization method that can be used to deal with
problems whose answers are a point or a surface
in n-dimensional space. In this space, the
assumptions are discussed, an initial speed is
allocated to them, and communication channels
are considered between particles. Then, these
particles move in the space of the reaction, and the
results are calculated based on a merit criterion
after each period. Over time, particles tend to
accelerate toward particles with a higher degree
of merit and are in the same communication
group. Despite the fact that every method works
well in a range of issues, this method has been
successful in solving continuous optimization
problems. Using this algorithm, we can optimize
the Roadheader progress rate [21]. There are four
steps for PSO algorithm, which are mentioned in
the following:

(1) Creating a critical mass and evaluating it;

(2) Determining the best personal memories and
the best collective memories;

(3) Updating the speed and position;
(4) If the stop conditions are not met, go to step 1
otherwise, it will end.

The termination conditions of this algorithm
are as follows:

1) To reach an acceptable response rate,

2) The number of repetitions,

3) The number of repetitions passed without a
certain improvement in the result, and

4) Completing a certain number of responses [18].

Particle deformation in this algorithm is based
on the experience of the particles and the rest of
the particles. Particles tend to experience the best



Prediction and Optimization of Roadheader Performance ... ANM Journal, Vol. 15, No. 45, Winter 2026

position and direction that they themselves or Table 2. Observation performed in 30 tunnel sections
other neighbors have taken in the past. In general, @ .

. . s 8=

it can be stated that the behavior and position of £ = E _ ==t

the rest of the particles on the hair are influenced Eo E i@ E % = S
by a small particle to achieve successful particles. g S 28 9 5 ﬁ ?.‘»
Modeling PSO is also based on the search for g S S E € 5
successful particle swarming points, which has & % = g
transformed PSO into a social search algorithm 1 Argillite 234 60 25 28.73
[19].

Particles attempt to gain the best position in 2 Silestone 225 54 24 3084
the search space with respect to the memory of 3 Silt-stone 228 89 20 40.60
their experiences and knowledge and their . Areill ) 19 - 3546
collective intelligence. Particles compete to gain rgiite i
the best position over the rest of their neighbors 5 Argillite 246 81 25 28.73
[19].

6 Argillite 25.2 57 24 30.84
5. DATA COFLLECTION 7 Silt-stone 226 70 24 30.84

Database was created based on the data 8 Silt-stone 227 62 22 35.46
collected through the field and the laboratory, 5 Siltstone 232 69 ” 3084
which are described in the following: i i

A- Field observations: In this section, the 10 Argillite 264 64 24 30.84
tunnel considered as the case study was divided 11 Silt-stone 229 86 23 33.09
into 30 parts along the tunnel strike and in each

12 Silt-stone 22.4 45 23 33.09

section, the rock core sampling work was carried
out using a machine tool. In each section, three 13 Silt-stone 231 67 22 3546
rock cores with a diameter of 54 mm were drilled.
Simultaneously, the number of joints in the tunnel
was counted along a withdrawal line. The number 15 Argillite 257 58 22 3546
of joints in these 30 sections recorded between 22
to 26. During the Roadheader operation, the time
and volume were also measured for excavating 17 Argillite 261 67 25 28.73
each section (Table 2).

B- Laboratory tests: The rock cores drilled in
the tunnel were examined in the laboratory under 19 Silt-stone 237 54 20 28.73
a point load test to calculate the UCS and tensile

14 Silt-stone 24.2 56 20 40.60

16 Argillite 24.9 38 22 35.46

18 Silt-stone 23.2 65 24 30.84

. 20 Coal 299 62 26 26.74
strength. The height of the rock samples was 27-
53 mm, and their diameter was 54 mm in all tests. 21 Silt-stone 242 74 23 33.09
Many methods can be used to obtain tensile 22 Silt-stone 238 80 24 30.84
and compressive strength, one of which is the use
23 Silt-stone 26.1 39 20 40.60

of a point test. Point load testing is performed on
small pieces of rock called cores[21]. Based on the 24 Coal 28.4 55 26 26.74
described process to create the database, the
required data was collected. In this regard, data
about parameters, including the type of rock, 26 Silt-stone 22.9 73 23 33.09
excavating volume, time, number of joints per unit
length, and RQD are presented in Table 2. Table 3
illustrates the data of point load index, 28 Argillite 267 52 24 30.84
compressive strength, and tensile strength of the
rock. In the following, the amounts of RMBI, PCI,
PCF, SE, and ICR were determined and the results 30 Silt-stone 22.8 82 22 35.46
are presented in (Table 4).

25 Silt-stone 22.3 69 23 33.09

27 Argillite 25.6 49 25 28.73

29 Silt-stone 23 67 22 35.46
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Table 3. Calculations of the point load index, compressive Table 4. Calculation of the instantaneous drilling rate
resistance and tensile resistance of samples

>< S
a 2 2 3
— (] 3] = 5] ©
E £ 05 B |2 | =
et f= = 8w 9, o = S 5 o 23 £
S B S T 28 S@ B = S i S = = =
g 28& & § g g2 g5 = 5 <9 £~ g% g% &=
s Re 35 E S e= 2% § g S 29 2 & ° = 2 &
E o7& 2 i = 28 92 5 E=] .é’m 2 & & o s = ohe
5 - O s 7 g =38 o @ =& 5 gE T E 3 E
wn K] g =) g wn, = v & ) > B0 =) S & o o
= 3 o -~ 2] L a Z o = 8 g =} = = s
i) A = —_ Q, U o » o > = o o w E
5 .g g ° S © = % E E 8
Z E 5 B E
= a a
1 4.20 43.10 226 2.11 50.73 2.03 094
1 1.69 3.27 37.78 7.21 34.79
2 4.90 43.65 2.15 2.10 50.49 2.02 098
2 2.1 491 35.41 7.18 36.66
3 20.89 4692 222 216 51.78 2.07 1.07
3 4.88 81.14 22.60 7.34 44.31
4 5.11 58.65 1.48 1.59 38.16 1.53 1.09
4 3.02 9.31 31.96 5.66 39.95
5 5.02 55.64 1.62 170 40.79 1.63 0.99
5 1.47 2.11 40.52 5.99 33.42
6 4.73 49.07 195 193 51.63 2.07 094
6 2.01 4.59 35.79 7.32 36.26
7 4.12 43.10 230 215 51.19 2.05 1.02
7 2.05 4.73 35.61 7.27 36.44
8 4.93 5246 1.79 1.83 43.90 1.76  0.96
8 3.03 1.82 31.20 6.37 39.98
9 4.74 46.18 222 214 51.41 2.06 094
9 2.02 4.61 35.76 7.29 36.31

10 431 4389 223 210 5047 2.02 095
10 2.08 4.81 35.52 7.18 36.57

11 437 4466 219 2.08 4997 2 1.03
11 2.55 7.62 33.00 7.12 38.42

12 5.01 53.75 173 179 4289 1.72  1.04
12 2.44 5.86 34.42 6.25 38.02

13 505 55.02 166 173 41.59 1.66 1.01
13 3.38 14.54 29.76 6.09 40.98

14 5.01 51.13 191 1.93 46.30 1.85 1.07
14 4.95 77.81 22.75 6.66 44.44

15 521 58.06 154 1.65 3953 1.58 0.95
15 3.2 12.38 30.53 5.83 40.68

16 433 4466 217 2.06 49.50 198 096
16 1.76 14.46 29.79 7.06 40.48

17 455 4543 220 211 50.57 2.02 108
17 2.04 3.50 37.38 7.19 35.06

18 599 5981 167 181 43.44 1.74 1.04

18 1.8 3.98 36.62 6.31 36.40
19 5.81 55.02 192 2.00 4811 1.92 094

19 1.36 3.46 37.44 6.89 35.26
20 3.01 43.10 218 2.04 4894 196 1.00

20 2.5 2.27 40.06 6.99 32.72

21 4.45 5045 174 175 41.93 1.68 1.00
21 2.04 6.08 34.21 6.13 38.24

22 4.33 79.67 174 174  41.67 1.67 1.62
22 5.17 3.82 36.86 6.10 36.40

23 5.02 54.39 1.6 1.76 4212 1.68 1.04
23 13 88.21 22.30 6.15 44.83

24 3.02 4310 199 186 44.67 1.79 094
24 2.76 1.95 41.04 6.46 32.31

25 6.01 60.38 1.64 179 4285 1.71 1.09
25 2.75 8.06 32.71 6.24 39.14

26 4.02 4466 2.01 1091 45.85 1.83 0.95
26 2.71 8.54 32.40 6.61 39.11

27 434 5180 1.61 1.64 39.26 1.57 1.02
27 1.22 2.58 39.23 5.80 34.80

28 399 4389 207 195 3685 1.87 094
28 2.26 5.14 35.15 6.73 37.16

29 401 46.18 188 1.81 43.53 1.74 096
29 3.42 13.50 30.11 6.32 40.65

30 523 5311 185 190 45.62 1.82 1.03
30 1.69 16.60 29.13 6.58 41.08
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6. STATISTICAL SURVEY OF THE VARIABLES

In this study, descriptive statistics were used to
predict the instantaneous drilling rate of

Table 5. Descriptive statistics of all 30 excavated sections in the considered advancing tunnel
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inferential statistics (including correlation
coefficient ~and  multivariate  regression).
Descriptive statistics of considered

variables/parameters are presented in Table 5.

Number Parameter Indication Mean Minimum Maximum Standard deviation
1 instantaneous cutting rate ICR 21.17 20.54 36.29 3.85
2 Rock quality designation RQD 14.33 13.75 24.75 6.038
3 Tensile strength Ot 0.09 0.59 0.663 0.173
4 Umaxja]gg’:rllgﬁhe“s“’e ucs 2231 5.35 16.71 436
5 Rock mass brittleness index RMBI 4.34 1.09 2.214 1.028
6 Pick consumption index PCI 24.44 0.44 3.476 6.309
7 Pick consumption factor PCF 57.34 26.71 42.76 6.8363
8 Specific energy SE 2.95 1.33 3.210 0.52

7. PREDICTION OF ICR USING LINEAR AND
NON-LINEAR REGRESSIONS

The main purpose of regression analysis is to
obtain a mathematical relationship between one
or more independent and dependent variables.
Therefore, in the regression analysis, in addition
to the correlation between the independent
variables and the dependent variable being
investigated, the type and form of the
mathematical relationship are also determined
[20-21]. In this study, in all linear and nonlinear
regression models, the parameters of ICR, ot, oc,

RQD, PCI, PCF, and SE were selected as input
variables and instantaneous infiltration rate as
output variable.

7.1. Linear Regression

In this study, to predict ICR, the correlation
between independent and dependent variables
was determined by Pearson’s correlation
coefficient (Table 6). Indeed, the correlation
coefficient shows the severity of the linear
relationship and the type of direct or inverse
relationship between the independent and
dependent variables.

Table 6. Pearson correlation coefficient matrix for parameters affecting the instantaneous drilling speed

Row Variables ICR RQR o, ucs RMBI PCI PCF SE
1 ICR 1 -0.036 0.213 0.221 0.975 0.719 -0.934 0.220
2 RQD -0.036 1 0.362 0.366 -0.640 -0.188 0.028 0.365
3 oy 0.213 0.362 1 1 0.176 0.199 -0.432 1
4 ucs 0.221 0.366 1 1 0.182 0.122 -0.438 1
5 RMBI 0.975 -0.064 0.176 0.180 1 0.831 -0.930 0.182
6 PCI 0.719 -0.188 0.119 0.117 0.831 1 -0.784 0.122
7 PCF -0.934 0.028 -0.435 -0.435 -0.930 -0.784 1 -0.438
8 SE 0.220 0.365 1 1 0.182 0.122 0.438 1

To predict ICR, a multiple linear regression
model was used with a simultaneous login method
in which all independent variables were analyzed
simultaneously. To perform linear regression,
from 30 excavated sections in the tunnel, 22
sections were adopted for modeling, and 8
sections were selected for testing models. Based
on these calculations, the linear regression
equation for modeling was obtained as Eq. (7).

ICR = 115.07 + 0.229(RQD) — 17.837(c,)
—26.53(UCS)
— 7.47(RMBI) (7)
+0.034(PCI)
— 1.84(PCF) + 6.82(SE)

To secure linear regression, the assumption of
independence of errors, normal errors, and the
linearity of independent variables should be
tested. The Watson Camera Test can be used to
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study the independence of errors. If the value of
this statistic is in the range of 1.5-2, the
assumption of the independence of errors can be
considered. In addition, if the co-linear ratio is
high in a regression equation, there is a high
correlation between the independent variables.
Therefore, despite the high coefficient of
determination, the regression model may not have
high credibility. The existence of this phenomenon
can be examined by controlling the variance
inflation factor (VIF) and tolerance. If VIF is more
than 10 and the tolerance is less than 0.1, linearity
between the independent variables is probable. If
the VIF value is greater than 30, it indicates a
serious problem. The coefficients of the regression
model for the variables of research and control of
the co-linear statistics of the model variables are
shown in Table 7. The values of the VIF and table
tolerance show that there is no coincidence
between the variables included in this study.

Error frequency distribution charts and
homogeneity of variances can also be plotted (Fig.
3). By comparing the error distribution diagram
with the normal distribution diagram, it was found
that the error distribution is almost normal
because the mean value is close to zero and the
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standard deviation is less than one. Regarding the
homogeneity diagram of variances, a standardized
dispersion curve of standardized residues versus
fitting values shows the optimal state because the
residues are randomly dispersed in a horizontal
bar around a zero residual value (Fig. 4). Table 7
presents the statistical characteristics of the
regression, analysis of variance, and regression
coefficients. In Table 8, the ratio of F is 73.669 and
is significant at the level of 0.001. Table 8 shows
the statistical characteristics of the regression and
variance analyses used to predict instantaneous
drilling rates. The Durbin-Watson test is a test for
examining the autocorrelation between residuals
in structural and regression models. The Durbin-
Watson statistic ranges from 0 to 4. If there is no
sequential correlation between the residuals, the
value of this statistic should be close to 2. If it is
close to zero, it indicates a positive correlation,
and if it is close to 4, it indicates a negative
correlation. In general, if this statistic is between
1.5 and 2.5, it indicates favorable results [20].
Given that the Durbin-Watson statistic obtained is
a number between 1.5 and 2.5, it therefore
indicates favorable statistical results, and also
because it is close to 2, it indicates positive
correlation.

Table 7. Regression coefficients and their tests

Sta;?d.ard Non-standard coefficients
Linear statistics p-value t-value _Coefiicients Model
Beta Error level B
Tolerance VIF 0.00 9.65 - 11.92 115.07 Fixed
0.132 3.34 0.00 4.25 0.265 0.540 2.229 Qualitative Index of Rock Mass
0.379 3.33 0.00 3.25 -1.02 0.23 -17.837 Compressive resistance
0.533 4.45 0.007 -2.96 -1.38 8.95 -26.53 Tensile resistance
0.467 2.09 0.00 -6.98 -2.31 1.07 -7.47 Index of rock mass fracture
0.178 1.67 0.001 4.02 0.246 0.009 0.034 Blade consumption index
0.190 1.48 0.00 -9.67 -2.78 0.191 -1.84 Blade consumption factor
0.550 2.22 0.030 2.31 1.09 2.95 6.82 Special energy
Scatterplot
Histogram
19 — Mean =0.566.14
Std 25':50-53’ Dependent Variable: ICR
104 -
.é_
Frequency o o
& // “ ;)80 i
o o 2
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0 T T T T T
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Fig. 3. Frequency distribution chart of errors.
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Fig. 4. Chart of homogeneity variances.
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Table 8. Statistical characteristics of regression and variance analysis for predicting ICR

Model summary

Converted to

Standard error Watson camera

R s R2 Estimation statistic
0.999 0.999 0.982 0.510 2.09
Variance analysis ANOVA
(rergss Sum of squares S Mean of squares Significance level F level
source degree
Regression 313.26 7 52.23 0.00 231.01
Remaining 0.266 23 0.021 - -
Total 313.69 30 - - -
7.2. Multiple Nonlinear Regressions
In many cases, a linear model is used to g
determine the relationship between the -
independent and dependent variables. In fact, the | -
relationship between variables is not always nscaniancous st
Cring v -

linear and may be non-linear. Therefore, in this
study, the previous data were also fitted with
polynomial, power, and exponential nonlinear
models, which are discussed below [21].

A: Polynomial Nonlinear Regression

After the analysis, a polynomial model was
used to predict the ICR of the road-header with a
R-square (R?) of 0.994 as Eq. (8).

ICR = 46.170 + 0.051(RQD) — 61.176(0,)?
+0.005(UCS)3
+ 0.013(RMBI)*
— 4.317(PCD)5 (8)
— 4.906(PCF)®
— 0.001(SE)’

B: Power nonlinear regression

In this case, a nonlinear power regression
model was used to forecast the ICR of the
Roadheader with a Rz 0f 0.997, as shown in Eq. (9).

ICR
[1.540—1.867(RQD)—0.237(03)+0.002(UCS) + (9)
= 1(00-039(RMBI)-0.002(PCI)~0.003(PCF)+0.060(SE)]

C: Exponential nonlinear regression

A nonlinear exponential regression model was
used to predict ICR of the Roadheader with a R2 of
0.998, as shown in Eq. (10).

ICR = exp(—0.845 + 0.197(at) 0062
— 1.047(0t)0716
+0.076(UCS)*280
+ 1.566(RMBI)156 (10)
+ 1.064(PCI) 0041
+1.972(PCF)~0518
+ 1.113(SE)0439)

The relationship between the predicted values
of ICR and the values measured by different
models for the test data can be seen in Figures 4 to
6.

3750 3

35,00 L o
i

R Sa Linear = 0.994

3250
7]

T T T
40.00 4250 45.00

T T
3250 3500 37.50
Predicted value

Fig. 4. Relationship ICR and its predicted values achieved
by polynomial function (R2=0.994).

45.00
42.50

40,00

Instantaneous 5 02566667
cutting rate 3 g

o
3750

35,00 =
7

R Sq Linear = 0.958

32.50

T T T T
3z.s0 3500 4250 4500

Fitateted vie
Fig. 5. Relationship between ICR and its predicted values
achieved by exponential function (R2=0.998).

pleqicisq AZIne
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3520 3z00 1000 +520 +200
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3520

& 2d rwss. = 0aay

3200

3120+
7]

cos Las E ]
wzesupmmeonz ERNEEEEER
+0°'00

320

4200

Fig. 6. Relationship between ICR and its predicted values
achieved by power function (R2=0.998).
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8. SELECTING BEST MODEL FOR ALGORITHM
POS

To evaluate the performance of different
models, compare them, and choose the best
model, R?, square root mean square of errors,
mean absolute percentage error (MAPE), and VAF
are determined for each model. The results show
that there is a good relationship between the
instantaneous drilling rate of the Roadheader and
the predicted value of the parameters with a very
high R? of the exponential functions model (R? =
0.998). To select the best model for estimating the
drilling rate of the Roadheader machine, based on
nonlinear and linear regression models, the linear
regression model with the highest R?, i.e., the value
(R2=0.999) was selected. To obtain the best model
among 30 sections, we selected and calculated 8
sections for the predicted value and 22 sections
for the measured value. Table 9 shows the best
model for the PSO algorithm based on the
determined effective factors.

Table 9. Selection of the best model for the PSO algorithm
based on the determined effective factors

Model R? RMSE MAPE VAF
Linear regression 0999 0.612 0.07212 99.80

Nonlinear

regression of 0994 0985 0.07717 86.1
polynomial function

Nonlinear
regression of power 0997 0.885 0.07814 87.1

function

Nonlinear

regression of 0997 0945 0.07316 88.1

exponential function

9. OPTIMIZATION OF ICR USING THE
ALGORITHM PSO (PARTICLE MASS
OPTIMIZATION ALGORITHM)

Selecting the appropriate input parameters is
an important part of evolutionary intelligence
algorithms and analytical models. Using the
analysis of the main components, we can
determine the parameters affecting a physical
phenomenon. In this research, the input and
output parameters for 30 considered sections as
the case study are RQD, UCS, ot, RMBI, PCI, PCF, SE,
as input parameters, and ICR as the output
parameter.

To model the issue, all the values of the
parameters must be recorded so that they can be
called up from the function when needed. At this
stage, the definition and implementation of the
initial values are performed as shown in Figure 8.

In this section, we specify the target function,
the number of unknown variables, the structure of
the unknown variables, and the upper and lower
limits of the variables. The relationship obtained
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from the linear regression model was used to
predict the ICR in the PSO algorithm. The linear
regression model was implemented several times
with parameter variations. This trend continued
until the algorithm reached the appropriate
convergence. The target function is ICR. According
to Figure 7, the results of the PSO algorithm show
that to obtain the optimum level of the target
function for a rock section with a oc of 51.78 MPa
and a RQD of 33.09%, ICR of the Roadheader is
equal to 36.41 m3/h. In Figure 8, the horizontal
axis represents the number of function
evaluations or NFEs.
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Fig. 7. Modeling of input parameters for optimization of
the considered tunnel.
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Fig. 8. Output of optimization issue of ICR of Roadheader
as a diagram.

10. ANALYZING THE SENSITIVITY OF THE
NEURAL NETWORK MODEL USING THE COSINE
FIELD METHOD

Sensitivity analysis is the study of the effect of
output variables on the input variables of a
statistical model. In other words, it is a way to
change the inputs of a systematic statistical model
that can predict the effects of these changes in the
output of the model. The cosine field method is
used to determine the ratio between the involved
parameters. In this section, the intensity of the
relationship between the ICR and the input
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parameters is determined. The results are
illustrated in Table 10.
Table 10. Analysis of the sensitivity of the input parameter

model to the instantaneous drilling rate using the cosine
field method

Sensitivity
Input parameter SO
putp instantaneous
drilling rate
Qualitative index of rock mass (%) 0.999
Tensile resistance (MPa) (ot) 0.996
Single-axial compressive resistance of 0.997
the rock (UCS) (MPA) )
Fragility index of the rock mass (RMBI) 0.995
Partition consumption index (PCI) 0.995
Partition consumption factor 0.997
(PCF)(m3/pick) )
Specific energy (SE) (M]J/M3) 0.992

As shown in Figure 9, ot, UCS, RQD, and PCF are
the most important parameters affecting ICR. In
addition, the influence of RMBI is relatively strong.
Parameters such as SE and PCI are more sensitive
to input parameters than ICR.

Sensitivity analysis
1.000

0.999

0.998

0.996

0934

0992

Amount drilling rate sensitivity

0930

0988
RQD at ucs RMBI PCI PCF SE
Parameters

Fig. 9. Intensity level of the instantaneous drilling rate
relationship with each input parameter.

According to Table 10, the results were
analyzed by SPSS Software to measure the
intensity level of ICR relationship with each of the
input parameters.

The effective parameters in determining ICR
for the case study were evaluated by cosine field
sensitivity analysis, which are as follows:

A: The computational error rate is almost zero,
indicating that the trained network has reached
the desired convergence.

B: The rate of advancement for these tunnels
from the input parameters is strongly influenced
by the geomechanically properties of the rock.

11. CONCLUSION

This research presented a model to predict the
performance of Roadheader machine in
underground coal mines based on characteristics

10

ANM Journal, Vol. 15, No. 45, Winter 2026

and geotechnical parameters of rock. In this
regard, a case study including 30 sections along a
tunnel in Parvadeh No. 1 underground coal mine
was taken to account. Analyses were performed
based on linear regression and nonlinear
regression, and the ANF system to predict
instantaneous cutting rate (ICR) of Roadheader.
Based on the introduced approach, prediction of
ICR in various geotechnical conditions is available
for tunnels and roadways in underground coal
mines. The prediction was conducted using the
neural network and PSO algorithm. The best linear
regression model was selected according to the
performance evaluation methods. To achieve the
best model made by the neural network, the
coefficient of determination (R?2), performance
index, root mean square error, and mean absolute
error percentage were used. Finally, to select the
best model for estimating ICR, the linear
regression system has a better estimation and
higher accuracy than nonlinear regression. The
mean squared error for the linear regression
model is less than that for the other two models,
and the correlation coefficient in linear regression
is greater than that in nonlinear regression. This is
while linear regression has a determination
coefficient R2 = 0/999, and this value has
tremendous reliability. Finally, by inserting the
linear regression results in the PSO algorithm, it is
shown that to obtain the optimum target function
for the rock mass transfer with a UCS of 1.68 MPa
and RQD of 33.09%, ICR of the Roadheader equals
33.11 cubic meters per hour. Considering specific
energy (SE) as an important parameter in
determining the drilling rate, so this parameter
should be considered for determination of ICR.
Here, the results of the algorithm show that for
34.21 of the consumable partition, SE should be
6.15 MJ/m3.
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