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Keywords  Abstract 

An open-pit mine production planning begins with determining the 
ultimate pit limit of an open-pit mine. The ultimate pit limit solver 
selects blocks whose total economic value is maximum while 
meeting the slope constraints. In other words, a group of blocks that 
maximize a selected parameter, such as profit, metal content, or net 
present value, is considered in determining the ultimate pit limit. 
Also, the ultimate pit limit is designed to select the waste dump 
location, surface facilities, extractable reserves, and the amount of 
waste removal. The production planning problem in large-scale 

open-pit mines is referred to as an NP-hard problem because it cannot be solved in a reasonable 
computational time. To solve this, various methods, including aggregation methods, have been proposed to 
reduce the size of the issue. In this paper, to evaluate the efficiency of the block aggregation technique based 
on the pit values and computational times, at first, the heuristic Tabesh-AskariNasab aggregation algorithm 
was applied to the block models with 2400 and 11400 blocks. Then the ultimate pit limit based on the original 
block model and reconstructed block models were determined using the linear programming model. 
Comparing the results in both block models indicates that the block aggregation approach considerably 
decreased computational time while generating near-optimal pit values. These results are more critical in 
large-scale production planning problems, exactly in open pit mine scheduling. Furthermore, the slope of pit 
walls was decreased by increasing the size of clusters, and the stripping ratio increased in both block models. 
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1. INTRODUCTION 

The Ultimate Pit Limit (UPL) design and the 
production schedule are two essential parts of the 
open-pit mine production planning process. The 
UPL indicates the size and shape of the open-pit 
mine at the end of its life. Also, with UPL design, 
the total extractable reserve and the profitability 
of the mine are determined. The waste dump, 
processing plant, and other facilities are located 
after determining the UPL [1]. 

The UPL is determined by different methods 
based on the block model. The orebody is divided 
into blocks and made a block model based on the 
alignment of exploratory boreholes and the height 
of the extraction benches. In this case, grades are 
assigned to each block using geostatistical 
techniques and borehole grade information to 

make a grade block model. Finally, with the 
economical parameters of the studied deposit and 
grade block model, its economic block model is 
prepared and based on this model, the UPL is 
determined [2]. 

Various methods, such as the Floating Cone 
algorithm (FC), dynamic programming, and Lerch-
Grossmann Algorithm, have been developed to 
design the optimum UPL. Each of these methods 
has particular advantages and disadvantages. The 
FC is the simplest among these methods that Pana 
introduced in 1965. An upward cone is first 
designed for ore blocks based on the desired slope 
angle in this method. Then the value of all the 
blocks in the cone is added together. If the result is 
a positive value, all the blocks inside the cone are 
removed. Otherwise, it is ignored. In this case, 
other ore blocks are searched, and cones are 
formed. This process continues until there are no 



 

 

Azadi et al. Analytical and Numerical Methods in Mining Engineering 

  

28 
 

more ore search blocks left. The results of this 
algorithm depend on the direction of the 
investigated model. This algorithm cannot provide 
an accurate answer or a mathematical guarantee 
of an optimal solution [1]. The Lerch-Grossmann 
algorithm is the most complex method proposed 
based on graph theory. It can be mathematically 
proved that the Lerch-Grossmann algorithm can 
find the optimum solution, but it takes high 
computational time [1, 3, 4]. 

Among different methods presented to design 
the UPL, mathematical models such as linear 
programming can generate real optimal solutions. 
Several researchers have used the mentioned 
methods to design the UPL of open-pit mines. 
AskariNasab et al. used the Intelligent Open Pit 
Simulator (IOPS) to determine the UPL [5]. Sayadi 
et al. used artificial neural network to determine 
the UPL [6]. 

Khodayari proposed a mathematical algorithm 
theory to design the UPL. This algorithm is 
formulated as a linear programming problem. In 
this method, only the positive blocks, which can 
offset the cost of the negative blocks, are placed in 
the UPL [7]. Rahimi et al. have proposed a logic-
mathematical algorithm based on the design and 
mining economics parameters to design UPL. This 
algorithm creates an iterative process among the 
various design components and directs them to 
the maximum value of the economical parameters 
of the mine[8]. 

In many mathematical-based techniques in 
large-scale mines, solving the UPL problem is 
time-consuming because their block model 
includes many blocks, which increases the 
number of constraints and decision variables. So, 
in 1983, Gershon introduced a directional model, 
in which blocks of a block model are aggregated 
together in columns or pillars. These columns 
consist of blocks that are stacked in a column. Each 
column extends to the bottom of the orebody bed. 
By applying this method to an actual deposit, the 
number of integer variables was significantly 
reduced due to the reduction in the number of 
blocks compared to the original block model [9]. 

Ramazan et al. have proposed the fundamental 
tree algorithm that reduces the number of 
variables without negatively affecting the model 
resolution by adopting slope and precedence 
constraints. The clusters' size and number in this 
algorithm cannot be controlled [10-12]. 
AskariNasab et al. reduced the number of decision 
variables using block aggregation. In this method, 
the blocks in each bench were aggregated based 
on the types of rocks, location, and grade 
distribution in each block using the fuzzy 

clustering method. These clusters were called 
mining cuts [13]. In 2011, Tabesh and 
AskariNasab introduced a two-stage clustering 
approach to reduce the size of the open pit mine 
planning problem. The first step uses the 
agglomerative hierarchical algorithm to cluster 
the blocks based on a similarity index. In this case, 
the blocks are classified based on the rocks, 
mineral grade, and distance between blocks on 
each bench. In the next step, the tabu search 
process reduces the arcs between the generated 
and the lower bench clusters. By performing these 
two steps, the number of binary decision variables 
is decreased significantly [14]. 

Ren and Topal used the fuzzy C-Means cluster 
algorithm to cluster blocks on mining benches 
[15]. In 2016, Jelvez et al. proposed a heuristic 
block aggregation algorithm. The blocks are first 
aggregated in this algorithm, and then the 
aggregate problem is solved using integer 
programming techniques [16]. In 2018, Mai et al. 
proposed a new block aggregation algorithm 
called the Top Cone Algorithm. This algorithm 
aggregates blocks into Top Cones to reduce the 
number of variables [17]. Lotfian et al. also used 
block aggregate to solve the open-pit mine 
planning problem. At first, mother clusters were 
created by aggregating the blocks by the k-means 
method. This work was done in a mathematical 
programming problem and then solved with a 
Genetic Algorithm (GA) [18]. 

This paper's main idea is to evaluate the 
efficiency of the block aggregation technique 
based on the pit values and computational times. 
For this reason, the UPL problem was solved using 
a Linear Programming (LP) model based on the 
original and aggregated block models. Thus, the 
Tabesh-AskariNasab clustering algorithm [19] 
was implemented to aggregate the blocks in two 
block models with 2400 and 11400 blocks. The 
heuristic Tabesh-AskariNasab algorithm 
aggregated the blocks into mining–cuts units. A 
comparison of the results indicates that the block 
aggregation approach considerably decreased 
computation time while generating near-optimal 
pit values, which is more critical in large-scale 
production planning problems. 

2. LINEAR PROGRAMMING MODEL OF UPL 

The design of UPL can be achieved using a LP 
model based on the economic block model of the 
deposit with slope constraints. In other words, for 
each block placed in the UPL, all the blocks found 
in its extraction cone must be located in the UPL. 
In addition, the total value of the blocks located in 
the UPL has been the highest possible value. 
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Equations 1 and 2 show this mathematically [20, 
21]. 

Objective fanction: 𝑀𝑎𝑥
 

∑ 𝑥𝑖𝜈𝑖
𝑁
𝑖=1  (1) 

Sabject to:  𝑥𝑖 ≤  𝑥𝑗             𝑖 = 1,2, , … , 𝑁  

                     ∀𝑗 ∈  𝑃𝑖       𝑥𝑖 ∈  {0,1} 
(2) 

 

Where 𝜈𝑖  represents the economic value of 
block i, and N is the total number of blocks in the 
block model. 𝑥𝑖  is a binary variable for block 𝑖. If a 
block is within the UPL, its value is one; otherwise, 
it is zero. j is the precedence block of the block i, 
which means is it must be extracted before the 
block i, provided that the slope constraint is 
met. 𝑃𝑖  is a set of blocks located in the extraction 
cone of block 𝑖. As the size of the block model 
(number of blocks) increases, so does the number 
of variables and decision constraints. As a result, 
sometimes, the problem cannot be solved 
logically. 

3. TABESH-ASKARINASAB HEURISTIC 
ALGORITHM 

Mathematical models can generate real 
optimal solutions for open pit mine planning 
design. However, block models with many blocks 
because of the large number of decision variables 
limit the efficiency of these models. To overcome 
this limitation, Tabesh and AskariNasab presented 
a heuristic algorithm for block aggregation to 
make the mathematical models tractable [14, 19]. 
In this algorithm, the similarity index of blocks is 
determined to cluster blocks into mining cuts. 
Therefore, for calculating the similarity indices, 
some attributes of blocks such as location, grade, 
and rock type are chosen, and each level of the 
block model is clustered separately. 

Tabesh and Askari-Nasab borrowed the idea of 
penalty values from Dosea [22] to define the 
similarity value between block i and block j 
according to equation (3): 

 ,
GD

ij ij
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 (3) 

 
Where S (i , j) is the similarity between blocks i 

and j. The similarity between each block and itself 
is set to zero in the similarity matrix. 𝑅𝑖𝑗  is the 

similarity index of rock type, calculated by 
equation (4). If two blocks i and j have different 
rock types, then 𝑅𝑖𝑗takes a penalty value of r ∈ [0, 

1], and if two blocks have the same rock types, 𝑅𝑖𝑗  

takes one. If the rock type is an influential factor in 
clustering, lower values should be assigned for the 
r parameter. 

𝐶𝑖𝑗  is the parameter calculated by equation (5) 

and checks that blocks i and j are in the same 

clusters. If two blocks i and j are in different 
clusters, then 𝐶𝑖𝑗  takes a penalty value of c ∈ [0, 1], 

and if two blocks are in the same clusters, 𝐶𝑖𝑗 takes 

one.  
ND denotes the normalized distance value of 

blocks determined from equations (6). 𝐷𝑖𝑗  is the 

Euclidean distance between the centers of two 
blocks i and j, calculated from equation (7), and 
𝐷𝑚𝑎𝑥is the maximum distance among all blocks at 
the same level of the block model. In equation (3), 
the normalized distance factor is powered to WD 
which is the weight of the distance factor. A higher 
value of WD recompenses other factors and leads 
to circular clusters. 

NG represents the normalized grade difference 
of two blocks, i and j, calculated by equations (8). 
𝐺𝑖𝑗  is the Euclidean distance between the grade of 

two blocks calculated from equation (9). 𝐺𝑚𝑎𝑥  is 
the maximum grade difference among all blocks in 
the current level of the block model. The 
normalized grade difference is powered to WG, 
which is the weight of the grade factor. A higher 
WG value makes the grade factor more effective in 
clustering. 

This clustering algorithm is based on an 
agglomerative pattern, so each block of the 
current level is first considered a cluster. 
Assuming N number of blocks in the current level, 
two N by N adjacent and similarity matrixes are 
established and iterative according to the 
similarity index of blocks or pre-formed clusters; 
similar blocks or clusters are merged to form new 
clusters. 
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After calculating the similarity matrix, the 
neighborhood matrix is formed in the next step. 
Neighbor definition for a block means that all 
blocks at a certain distance from the geometric 
center of that block or less than it will be 
considered neighbors. After selecting similar 
blocks and merging them into larger clusters, the 
similarity and neighborhood matrices are 
updated. There are three methods to calculate the 
similarity between merged blocks and other 
clusters: a single link, a complete link, and a mean 
link. The neighborhood matrix is updated in the 
complete link using the following equation. 

  𝑆(𝑖,𝑗),𝑘 = 𝑚𝑖𝑛 (𝑆𝑖𝑘 , 𝑆𝑗𝑘)                         
(10) 

  ∀𝑘 ∈ {1,2, … , 𝑁}           𝑘 ∉  {𝑖, 𝑗}  

An integrated cluster will be adjacent to other 
clusters if at least one of the blocks in one cluster 
is adjacent to one of the blocks in the other cluster. 
The neighborhood matrix is then updated using 
the following equation, and this process continues 
until all the blocks are examined. 

  𝐴(𝑖,𝑗),𝑘 = 𝑚𝑖𝑛 (𝐴𝑖𝑘, 𝐴𝑗𝑘)                         
(11) 

  ∀𝑘 ∈ {1,2, … , 𝑁}           𝑘 ∉  {𝑖, 𝑗}  

4. EVALUATION OF BLOCK AGGREGATION 
SCHEME 

Two examples were considered to evaluate the 
efficiency of the block aggregation scheme. The 
evaluation was based on the UPL values and 
computation time using the LP model. 

4.1. Example one 

This example constructed a hypothetical 3D 
fixed block model with six levels containing 2400 
blocks. The dimensions of all blocks are 10*10*10 
meters. Each block's grade and rock type were 
identified in the geological block model. The 
economic block model was constructed from the 
grade block model using the economic parameters 
listed in Table 1. 

Table 1. Economic parameters to construct synthetic 
economic block model 

Mining cost 
($/ton) 

Processing 
cost ($/ton) 

metal price 
($/kg) 

cut-off 
grade 

10000 90000 330 0.3 

The Tabesh-AskariNasab clustering algorithm 
was implemented to aggregate the blocks given 
the cluster size (the maximum allowable number 
of blocks in each cluster). In this example, six 
cluster sizes of 2, 3, 4, 5, 6, and 10 were 
considered, and six different reconstructed block 
models with varying sizes of clusters were 
generated. Then the LP model was implemented in 
seven scenarios (one original block model and six 
reconstructed block models with different sizes of 
the cluster were considered scenarios 1 to 7, 

respectively), and the results were discussed. 

According to the LP model structure, the 
number of decision variables and constraints for 
the original block model and six reconstructed 
block models is mentioned in table 2. 
Consequently, the number of decision variables 
and constraints decreased with increasing the 
cluster size. 

Table 2.  The number of decision variables and constraints 
for the original block model and six reconstructed block 
models 

Constraint 
Numbers 

Decision Variable 
Numbers 

Description 

1020 1420 Scenario 1 

588 801 Scenario 2 

483 686 Scenario 3 

355 473 Scenario 4 

312 427 Scenario 5 

278 390 Scenario 6 

188 256 Scenario 7 

The UPL was designed using the LP model for 
all scenarios. The UPL values, the number of ore 
and waste blocks in the UPL, overall stripping 
ratios, and the LP model's run time for different 
scenarios are presented in table 3. 

 

Table 3. The results of the LP model for the original block model and different scenarios of the clustered block 

Stripping 
Ratio 

Run time 
(second) 

Number of total 
blocks 

Ore blocks 
Number 

waste blocks 
Number 

UPL value Description 

2.75 0.77 1245 332 913 11382000 Scenario 1 

2.9 0.28 1334 344 990 10992800 Scenario 2 

2.9 0.25 1354 349 1005 10942600 Scenario 3 

2.9 0.15 1379 354 1025 10751800 Scenario 4 
2.9 0.14 1378 353 1025 10721600 Scenario 5 

2.91 0.14 1385 354 1031 10648200 Scenario 6 

2.93 0.06 1391 354 1037 10571800 Scenario 7 
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The UPL value obtained by the LP model based 
on the original block model is the optimum and 
reference value. So the pit values based on the 
block aggregation approach with various cluster 
sizes were evaluated concerning this reference 
value. UPL values and run times of different 
scenarios are compared in figures 1 and 2. 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 1. Comparison of UPL values of different models with 
the original value. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Comparison of run times of different models 
with the original value. 

 

The clustering algorithm and the LP model 
were programmed in MATLAB software and 
implemented in a system with Intel (R) Core i7 
processor specifications - 3.4 GHz CPU and RAM: 

16 GB in Windows 7 environment. 
Comparison of the results, for example, the 

cluster size of 3 blocks (scenario 3) decreased the 
run time by about 67.53 percent. At the same time, 
its UPL value is only 3.9% lower than the optimum 
UPL value (reference value). Based on the results 

shown in Figures 1 and 2, clustering has been done 
optimally. In addition, the slope of pit walls was 
reduced in different scenarios, and the stripping 
ratio increased shown in figure 3. 

 

Scenario 1 

 

Scenario 2 

 

Scenario 3 

 

Scenario 4 

 

Scenario 5 

 

Scenario 6 

 

Scenario 7 

Fig. 3. The section view of the UPL shape of the block 
model in the east-west direction. 

4.2. Example two 

The second block model is a real phosphate 
mine with 11400 blocks and four levels. The 
dimension of all blocks in this model is 10*10*5 
meters. Each block's grade and rock type are 
identified in the geological block model. The 
economic block model was constructed from the 
grade block model using the economic parameters 
listed in Table 4. 
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Table 4. Economic parameters to construct synthetic 
economic block model 

 

Mining cost 
($/ton) 

Processing 
cost ($/ton) 

sulfate price 
($/kg) 

cut-off 
grade 

30000 90000 20 0.6 

In this example, using the Tabesh-AskariNasab 
clustering algorithm, seven cluster sizes of 2, 3, 4, 
5, 6, 10, and 20 were considered, and seven 
different reconstructed block models with varying 
sizes of clusters were generated. The LP model 
was implemented in eight scenarios. The number 
of decision variables and constraints for the 
original block model and seven reconstructed 
block models is according to table 5. 
Consequently, the number of decision variables 
and constraints decreased with increasing the 
cluster size. 

Table 5. The number of decision variables and constraints 
for the original block model and seven reconstructed 
block models 
 

Constraint 
Numbers 

Decision Variable 
Numbers 

Description 

7322 10172 Scenario 1 

4020 5581 Scenario 2 

3339 4646 Scenario 3 

2112 2966 Scenario 4 

1781 2524 Scenario 5 

1468 2109 Scenario 6 

854 1255 Scenario 7 

417 629 Scenario 8 

For all scenarios, the UPL was designed using 
the LP model. The UPL values, the number of ore 
and waste blocks in the UPL, overall stripping 
ratios, and the LP model's run times for different 
scenarios are presented in table 6.

Table 6. The results of the LP model for the original block model and different scenarios of the clustered block 

Stripping 
Ratio 

Run time 
(second) 

Number of total 
blocks 

Ore blocks 
Number 

waste blocks 
Number 

UPL value Description 

0.28 17.6 6643 5199 1444 76736 Scenario 1 

0.31 8 6797 5195 1602 76503 Scenario 2 

0.30 5.5 6998 5210 1788 76358 Scenario 3 

0.47 4 7842 5319 2523 75760 Scenario 4 

0.52 3.1 8141 5362 2779 75550 Scenario 5 
0.54 2.26 8227 5333 2894 75419 Scenario 6 

0.6 1.8 8564 5391 3173 75198 Scenario 7 

0.62 0.3 8816 5440 3376 75040 Scenario 8 

 
As mentioned earlier, The UPL value obtained 

by the LP model based on the original block model 
is the optimum and reference value. So the pit 
values based on the block aggregation approach 
with various cluster sizes were evaluated 
concerning this reference value. UPL values and 
run times of different scenarios are compared in 
figures 4 and 5. 

 
Fig. 4. Comparison of the UPL values of different models 

with the original value. 

 
Fig. 5. Comparison of run times of different models with 

original value. 

A comparison of the results indicated that the 
scenario with the cluster size of 3 blocks 
decreased the run time by about 68.75 percent. At 
the same time, its UPL value is only 0.49% lower 
than the optimum UPL value (reference value). 
Also, the slope of pit walls was reduced by 
increasing the size of clusters, and the stripping 
ratio increased, as shown in Figure 6. 
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Scenario 1 

 

Scenario 2 

 

Scenario 3 

 

Scenario 4 

 

Scenario 5 

 

Scenario 6 

 

Scenario 7 

 

Scenario 8 

 

Fig. 6. The section view of the UPL shape of the block model in the east-west direction. 
 

5. CONCLUSION 

In this paper, the heuristic aggregation 
algorithm presented by Tabesh-AskariNasab was 
used to block aggregation. This algorithm 
significantly reduced the computation time of the 
LP model in designing the UPL of open-pit mines, 
with a decrease in the decision variables. The 
aggregation algorithm and the LP model were 
programmed in MATLAB software. Two block 
models were then used to evaluate the capability 
of this heuristic method. As a result, the number of 
decision variables, constraints, and consequently, 
the computation time in both block models 
decreased with the increased cluster size. While 
the computational time reduces significantly with 
increasing cluster size, these results are more 
critical in large-scale production planning 
problems. A comparison of the results indicated 
that the scenario with the cluster size of 3 blocks 
decreased the run time by about 67.53 percent, for 
example, one, and 68.75 percent, for example, two. 
In this case, at the same time, the UPL values are 
only 3.9% and 0.49% lower than the optimum UPL 
value (reference value), respectively. So, an  

aggregation algorithm can promptly achieve a 
reasonable answer. 
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