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Keywords 
  Abstract 

Shovels are among the most important equipment in open-pit 
mining operations, widely used for loading minerals. These heavy 
machines play a crucial role in operational efficiency, but due to the 
operator's visibility limitations, particularly in the shovel's blind 
spots, they pose significant safety risks. In these situations, 
operators may face challenges in detecting vehicles around the 

shovel, increasing the likelihood of accidents and incidents. This study proposes an enhanced version of 
the YOLO model for the precise and rapid detection of vehicles around the shovel in copper mining 
environments. The proposed model, using real-time processing, is capable of detecting vehicles in four 
directions around the shovel and preventing collisions. To evaluate this model, real-world data collected 
from four cameras installed around the shovel in a copper mine under various lighting conditions, 
including day and night, were used. The proposed method was evaluated on a new dataset of shovels under 
real working conditions. The results, with an average accuracy of 94.2% and a rate of 159 fps, demonstrate 
a significant improvement in detection accuracy and an increase in the speed of the recognition process, 
meeting the requirements for accurate and real-time detection of vehicles around the shovel. The findings 
show that the proposed model can act as an effective collision avoidance system, preventing collisions 
between the shovel and surrounding vehicles, which directly enhances the safety of the work environment 
and personnel. Furthermore, this system can help reduce accidents and injuries caused by collisions 
between shovels and surrounding vehicles, thereby improving the overall productivity of mining 
operations in copper mines. 
 

Copper mining 

Object detection 

Shovel 

YOLO 

1. INTRODUCTION 

Although mines are divine treasures on the 
earth's surface and must be exploited to elevate 
the economic level of human societies, they have 
always been a lurking danger for miners. Many 
workers have lost their lives in this pursuit. 
Mining accidents, regardless of their cause, have 
an adverse effect on the workforce and the 
productivity of mining units. While financial losses 
resulting from accidents may be recoverable, the 
psychological damage to workers' morale is often 

irreparable. Mining is the backbone of the 
economy in many countries, and without it, their 
economies would face severe disruption. For 
example, Chile derives 14% of its GDP and 59% of 
its total exports from mining, Australia relies on 
mining for 10% of its GDP and over 260,000 jobs, 
and South Africa depends on mining for 8.5% of its 
GDP and 30% of its foreign exchange earnings. 
However, it is accompanied by numerous risks. 
Safety has always been a challenging issue not 
only for workers but also for mining companies 
and labor unions. Various studies and research 
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around the world indicate that despite efforts to 
reduce accidents, the number of serious incidents 
and fatalities in mines remains high. Despite 
advancements in modern technology [1-3], mining 
remains one of the industries with the highest 
rates of accidents [4-8]. For instance, Spain 
reports 12.7 accidents per 1,000 workers annually 
due to inadequate safety protocols [4], Indonesia 
attributes 34% of mining accidents to gaps in 
supervision and training [5], and Turkey identifies 
58% of severe injuries as stemming from 
equipment failures [7].In recent years, despite 
technological advancements, the number of 
incidents caused by mining equipment in certain 
regions has risen [9]. Many workers seem unable 
to identify hazards or interpret and recognize 
dangerous situations in the context of necessary 
actions [10,11]. 

A particularly promising application of AI in 
mining is the development of collision avoidance 
systems powered by computer vision. These 
systems leverage advanced sensors such as 
cameras and LIDAR [12,13], combined with 
complex algorithms and deep learning models, to 
detect and track the movement of workers and 
objects within underground mines [14-16]. By 
providing real-time warnings and alerts to 
operators and personnel, this technology plays a 
crucial role in preventing accidents and ensuring 
worker safety. 

The technological advancements, collectively 
referred to as Mining 4.0 [17–19], have played a 
pivotal role in this transformation, driving a 
fundamental shift in how mining operations are 
conducted. However, despite these technological 
improvements, the mining industry still faces 
challenges such as elevated rates of accidents and 
occupational illnesses, particularly when large, 
expensive machinery is employed to meet high 
production demands. Nevertheless, the transition 
from Mining 4.0 to Mining 5.0 has triggered a 
significant transformation, leading to more 
efficient collaboration between human workers 
and autonomous systems. 

Numerous studies [20-23] indicate that mining 
equipment is the primary cause of injuries in the 
mining industry. The open-pit mining system, 
driven by the need for increased production, is 
advancing toward the use of larger machinery, 
which has raised concerns about the safety of 
these machines [20,22]. Blind spots in 
construction machinery refer to areas around 
heavy vehicles that are not directly visible through 
windows or mirrors, rendering the operator 
visually impaired in those zones [21,23]. These 
blind spots pose significant safety risks as they can 
obscure the presence of workers, pedestrians, or 

other vehicles near the equipment, leaving 
operators unaware of potential hazards [22]. To 
prevent accidents and ensure the safety of both 
operators and those working around construction 
machinery, identifying and minimizing these blind 
spots is crucial [20,23]. Recognizing blind spots in 
construction machinery requires a thorough 
understanding of each machine's design and its 
visibility limitations [21,22]. 

One of the fields where technological 
advancements have made a profound impact is 
artificial intelligence (AI). Across the entire mining 
lifecycle-from exploration and planning to 
reclamation and closure-AI can be utilized at 
various stages, including exploration, mine 
planning, mobile equipment operations, drilling 
and blasting, and mineral processing [24,25]. In 
recent years, AI has significantly advanced the 
automation of machinery and vehicle operations, 
enhancing both efficiency and safety. 

Shovels are a type of mechanical excavator 
widely used in open-pit mining to drill and move 
large volumes of ore and waste materials. These 
large and powerful machines play a key role in the 
mining extraction process. However, one of the 
major challenges in their use is the presence of 
blind spots, which, due to the operator's limited 
visibility, can create serious risks for both workers 
and equipment. Blind spots typically include areas 
behind the machine, around it, or regions covered 
by parts of the machine, such as the shovel bucket. 

 For example, the rear swing radius and the 
presence of various equipment behind the 
operator can block their view, especially during 
rotation, which limits the ability to operate at full 
efficiency. Additionally, the bucket and boom 
areas can create significant blind spots, making it 
difficult to see objects close to the excavator. 

To reduce the risks associated with these blind 
spots, our goal is to utilize advanced technologies 
such as object detection systems. These systems 
can accurately detect vehicles around the shovel 
and alert the operator about the surrounding 
environment. Specifically, we aim to install 
cameras around the shovel and use artificial 
intelligence algorithms for vehicle detection to 
significantly improve operational safety. These 
systems can notify the driver of potential hazards 
through audio alerts or visual signals displayed on 
mirrors and monitors. 

Over several decades of research aimed at 
object detection and identification in images, 
various methods have been proposed. Among the 
earliest and most successful ones are techniques 
like Viola-Jones [26], HOG [27], and DPM [28]. 
These methods worked by manually extracting 
features designed by researchers and using sliding 
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windows, resulting in slow speeds and poor 
performance in detecting objects in complex 
images. With the saturation of classical methods, 
the advent of deep learning and convolutional 
neural networks (CNNs) changed the landscape of 
visual perception, leading to the development and 
introduction of deep learning-based object 
detection models and both single-stage and two-
stage CNN architectures. 

Among two-stage detectors, Faster R-CNN [29] 
is a notable example. Despite advancements in 
two-stage detectors, their speed is still limited by 
the multi-stage process [30]. In contrast, single-
stage detectors search for objects at specific 
locations and sizes, with both bounding box 
extraction and classification occurring in a single 
step.  

This results in faster speeds compared to two-
stage detectors. SSD [31], YOLO [32], Retina-Net 
[33], and Center-Net [34] are some of the 
prominent single-stage detectors. One of the 
pioneering works in single-stage object detection 
is YOLO. 

YOLO employs a Convolutional Neural 
Network (CNN) to simultaneously predict 
multiple bounding boxes and their corresponding 
classes across the entire image by dividing the 
image into an S×S grid. Each grid cell predicts 
bounding boxes and object confidence scores. The 
authors of YOLO improved their model with 
newer versions; YOLO9000 [35] introduced multi-
scale training, and YOLOv3 [36] used an enhanced 
backbone called Darknet53, incorporating multi-
scale detection for better object recognition at 
varying sizes. While YOLOv3 was the last official 
version developed by the original authors, other 
researchers continued to advance the model and 
introduced improved YOLO-based architectures. 
For instance, in 2020, YOLOv4 [37] was 
introduced, featuring advancements like cross-
stage partial connections, Mish activation, CIoU, 
and new image augmentation techniques, 
enhancing YOLOv3's performance. 

One major advancement in YOLO-based object 
detectors is YOLOv5 [38], which shares structural 
similarities with YOLOv4 but includes several 
enhancements, such as generating more accurate 
anchor boxes using genetic algorithms and 
implementing the model in Python and the 
Pytorch framework [39]. This makes YOLOv5 less 
complex and faster than other YOLO-based 
models, making it a favorable choice for real-time 
object detection tasks. YOLOv5 is an ongoing and 
popular project, further improved with the 
introduction of C3 and SPPF modules and the SiLU 
activation function [40].  

Several unofficial YOLO-based models were 
introduced in 2022 and 2023 by various 
researchers. YOLOv6 [41] includes a new 
backbone network called Efficient-Rep and a new 
neck network named Rep-PAN, with separate 
localization and classification heads. A few months 
later, Wang et al. introduced YOLOv7 [42], 
featuring a new backbone called ELAN and 
auxiliary detection heads to enhance accuracy, 
making it significantly different from other YOLO-
based models. Additionally, the first version of 
YOLOv8 was released in January 2023 by the 
YOLOv5 authors, introducing anchor-free object 
localization, C2F blocks, and online image 
augmentation techniques. However, YOLOv8 is 
still under active development [43]. 

 Compared to earlier models like YOLOv5, 
which is widely used today, the newer YOLO 
variants mentioned are rarely applied in practice 
and require ongoing improvements and 
evaluations for real-world applications [44]. 
While the performance of YOLO models has 
improved over time, it is worth noting that they 
often prioritize speed and efficiency over 
accuracy. This trade-off is essential, as it enables 
real-time object detection across various 
applications. Many real-world applications 
require real-time object detection, which makes 
achieving a balance between speed and accuracy a 
challenging task. 

To address this challenge, this work focuses on 
one of the most prominent members of the YOLO 
object detector family [38]. In order to achieve 
precise and accurate detection of vehicles around 
the shovel, modifications have been made to the 
YOLOv5 object detector to enhance its detection 
capabilities. The selection of YOLOv5 as the 
foundation of this study, despite the availability of 
newer versions, stems from a rigorous 
engineering analysis of the operational demands 
in mining environments.  

Inherent compatibility with non-ideal mining 
conditions-such as dense dust, abrupt lighting 
variations, and partially obscured objects-makes 
YOLOv5 a more reliable choice. Its training on 
custom datasets collected from real-world mining 
scenarios equips it with unparalleled robustness 
against environmental noise. In contrast, newer 
versions, primarily trained on generic datasets, 
require extensive retraining and complex 
adjustments to adapt to mining-specific 
challenges.  

The simpler modular architecture of YOLOv5 
allows seamless integration of advanced attention 
mechanisms without fundamental alterations to 
core layers. Meanwhile, the modified 
architectures of newer versions introduce 
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complexity that complicates development and 
optimization. 

 Native optimization for real-time processing 
through lightweight model variants enables 
simultaneous analysis of video streams from 
multiple shovel-mounted cameras without relying 
on high-power hardware. This capability is critical 
in mining environments, where processing delays 
directly impact safety. Broad industrial ecosystem 
support for YOLOv5, including deployment tools 
for edge platforms and compatibility with multi-
sensor integration, ensures the flexibility needed 
to evolve the system toward future architectures. 
These convergent advantages solidify YOLOv5 as 
an engineered, practical solution for vehicle 
detection in shovel blind spots. 

A shovel dataset from a copper mine, collected 
under real-world working conditions, was used to 
train a deep learning model on the given dataset, 
with an average accuracy of up to 94%. In Section 
2, the overall structure of the YOLOv5 network 
and the proposed modifications made to the base 
model to improve its performance are explained.  

Then, in Section 3, the evaluation metrics and 
result analysis are presented, and finally, the last 
section is dedicated to the conclusion and future 
recommendations. 

2. METHODOLOGY 

In this section, we first provide an overview of 
the YOLOv5 architecture, explaining its key 
components and functionality. Then, we describe 
the proposed improved method based on YOLOv5, 
aimed at enhancing both the accuracy and speed 
of the model. 

2.1. Yolov5 Network Architecture 

Due to the challenges of accurately detecting 
vehicles around the shovel and the importance of 
preventing collisions in industrial environments, 
we improved the YOLOv5 model. However, in this 
section, we aim to explain the default structure of 
YOLOv5. 

 As previously mentioned, YOLO detectors are 
primarily deep learning networks developed for 
object detection tasks. These networks offer 
higher inference speeds compared to other 
models, making them more suitable for real-time 
object detection requirements. YOLO networks 
have been improved  

over successive versions. Since YOLOv5 is 
faster and performs better than its predecessors, 
our proposed model was developed based on 
YOLOv5 v6.1, which was released in 2022. 

 In this section, we explain the default 
structure of this version of YOLOv5. The main 
difference between YOLOv5 and other YOLO 
models lies in its improved architecture, 
implementation, and advanced features. This 
model, as a faster and more optimized version of 
its predecessors, offers improved performance 
with advanced features. 

 YOLOv5 was updated in 2022 by Ultralytics, 
and with improvements in its architecture and 
implementation, it has become a suitable option 
for industrial applications such as mining. These 
enhancements have made YOLOv5 more accurate 
in object detection and faster in inference 
compared to previous models. 

YOLOv5 is an improved version of the YOLO 
network, continuing the core idea of the YOLO 
series in algorithm design. YOLOv5 consists of 
four main parts: input, backbone, neck, and head, 
with its architecture shown in Fig. 1.  

The image to be detected is processed through 
an input layer and then sent to the backbone for 
feature extraction. The backbone generates 
feature maps of varying sizes, which are then 
combined through the feature fusion network 
(neck) to ultimately produce three feature maps, 
P3, P4, and P5, with sizes 80×80, 40×40, and 
20×20, respectively, for detecting small, medium, 
and large objects in the image. 

The head section is responsible for object 
detection and classification. After the three feature 
maps are sent to the head, a multi-dimensional 
array is inferred, containing the object class, class 
probability, coordinates, and box width and height 
information. Then, a post-processing operation is 
applied to filter out irrelevant information, 
including a confidence threshold to select boxes 
with probabilities above the threshold and a non-
maximum suppression algorithm to select the box 
with the highest probability from the chosen 
boxes. 

The backbone consists of several modules, 
including (Conv+BatchNorm+SiLU) or 
ConBNSILU, C3 modules, and finally an SPPF 
module. The ConBNSiLU module is used to assist 
the C3 module in feature extraction, while the 
SPPF module, a fast spatial pyramid pooling layer, 
eliminates the constraint of fixed input size, 
meaning the network no longer requires a fixed-
size image. Specifically, an SPPF layer is added on 
top of the final convolution layer. The SPPF layer 
combines features and produces fixed-length 
outputs that are then fed into fully connected 
layers. 

 In the backbone, YOLOv5’s most important 
module is C3, whose core idea is derived from CSP-
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Net. This layer ensures the capability to extract 
features in the backbone by removing redundant 
gradient information. The neck section uses the 
PAN method, a feature fusion path from bottom to 
top, which is employed to improve detection 
accuracy across different object scales. 

The fundamental mechanism of all YOLO 
versions is the same: images are divided into cells 
of equal size, and each cell is responsible for 
detecting objects whose centers fall within the 
cell. The primary differences between various 
YOLO versions lie in the backbone and neck 
components.  

The only distinction between the different 
versions of YOLOv5 lies in the number of layers 
and parameters. As these increases, they influence 
the training time and accuracy. 

 In Table 1, Framework, Backbone, and Year of 
Release are listed for each YOLO version. By 
understanding the overall structure of the YOLOv5 
network, the next section demonstrates how we 
have modified and improved its real-time 
performance to accurately detect vehicles around 
the shovel. 

 

Fig. 1. YOLOv5 Block Diagram. 
 

Table 1. Summary of YOLO architectures 

Model Date Anchor Framework Backbone 

YOLO 2015 No Darknet Darknet24 

YOLOv2 2016 Yes Darknet Darknet24 

YOLOv3 2018 Yes Darknet Darknet53 

YOLOv4 2020 Yes Darknet CSP Darknet53 

YOLOv5 2020 Yes Pytorch YOLOv5 CSP Darknet 

YOLOv6 2022 Yes Pytorch EfficientRep 

YOLOv7 2022 Yes Pytorch Extended ELAN 

YOLOv8 2023 No Pytorch CSPDarknet (c2f) 
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2.2. Proposed Yolov5 Architecture 

In this section, the proposed network based on 
the YOLOv5 architecture is explained in detail. The 
main goal of this research is to develop an accurate 
model for real-time vehicle detection around 
shovels in copper mines. The achievements of the 
proposed network could serve as an inspiration 
for accurate and real-time detection of similar 
objects.  

To improve the trade-off between accuracy 
and speed, the ECA channel attention module has 
been used to modify the network's backbone. In 
the proposed architecture, all C3 modules in the 
backbone are replaced with the ECA attention 
module, and the SGD optimizer is used for 
training. The ECA channel attention module, as 
shown in Fig. 2, takes the W*H*C features 
extracted from the previous layer and transforms 
them into a 1*1*C tensor through a Global Average 
Pooling (GAP) operation. 

 
Fig. 2. Attention module architecture ECA [36]. 

This way, a global average of the features is 
obtained for each channel, which is then filtered 
by a 1D convolutional layer with learnable 
weights. Following this, a sigmoid activation 
function is applied to generate weights for the 
channels based on their importance. Finally, the 
obtained weights, which form a 1*1*C tensor, are 
multiplied by the input features. The output is a 
feature tensor with dimensions W*H*C, where the 

channels are weighted according to their 
importance. The main idea behind using ECA is 
that this module introduces an efficient attention 
mechanism that helps the network focus more 
effectively on relevant features of the input images 
while reducing unnecessary computations. The C3 
module, which is the default in YOLOv5, is a simple 
convolutional block, while ECA adaptively adjusts 
the responses of channel features.  

This allows the model to have a better ability to 
identify objects under various conditions, while 
also making more efficient use of computational 
resources. One of the main challenges in real-time 
object detection, especially in complex 
environments like around shovels in mines, is 
balancing accuracy and processing speed. The 
presence of dynamic and cluttered backgrounds, 
varying lighting conditions, and fast-moving 
vehicles makes it difficult for traditional models to 
maintain consistent performance without 
imposing excessive computational overhead. By 
replacing C3 with ECA, the network is able to focus 
more effectively on the important features of the 
scene, leading to improved detection accuracy, 
particularly for smaller vehicles or those partially 
obscured. This ultimately results in an overall 
improvement in the model’s performance. At the 
same time, ECA introduces a lightweight and low-
cost attention mechanism, reducing the 
complexity compared to other attention-based 
models, which is crucial for maintaining the fast-
processing speed required for real-time 
applications.  

In mining environments, where shovels move 
frequently and rapidly, having a fast and accurate 
model is essential to ensure that no vehicle is 
missed and safety is maintained at all times. In 
summary, by integrating the ECA module into the 
YOLOv5 architecture, we have developed a more 
effective and efficient model for real-time vehicle 
detection around shovels. This improvement 
enhances both detection accuracy and processing 
speed, which are critical factors for timely vehicle 
identification and maintaining the safety of 
personnel in the mining environment. Fig. 3 shows 
the block diagram of the enhanced YOLOv5 
network. 
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Fig. 3. Improved YOLOv5 block diagram. 
 

3. EVALUATION OF RESULT 

In this section, the dataset used to evaluate the 
proposed algorithm is first described. 
Subsequently, the evaluation metrics employed to 
assess the results are introduced. Finally, the 
obtained results are reported and analyzed. 

The dataset used in this study initially included 
600 raw images captured by four cameras 
positioned around a mining shovel. Techniques 
such as brightness reduction, contrast adjustment, 
and artificial blurring were applied to augment the 
training set, expanding it to 1,200 images. Seventy 
percent of the images were used as the training 
set, 20% as the validation set, and 10% as the test 
set.  

The test set remained unprocessed to reflect 
real-world conditions. All machinery near the 
shovel was grouped into a single class, but future 
expansions will differentiate specific equipment 
types and introduce a human operator class. 

 A few examples of the images from the dataset 
are illustrated in Fig. 4. The simulations were 
performed on the Ubuntu 20.04 operating system 
using an Intel® Xeon(R) Silver 4210 CPU @ 
2.20GHz × 20, 128 GB of RAM, and an NVIDIA 
GeForce RTX 3090 graphics card.  

While the proposed system is primarily 
focused on detecting machinery around shovels, 
its flexible YOLOv5-based architecture and 
channel attention mechanisms inherently support 
generalization to other mining equipment, such as 
trucks or drilling rigs. This adaptability is 
achievable without structural redesign, through 
installing cameras in the blind spots of new 
equipment, collecting operational data from the 
target environment, and retraining the model.  

 

 

 

 

 
Fig. 4. Sample instances from the dataset used. 
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Although no specific empirical tests have been 
conducted on non-shovel machinery, the model’s 
success in complex environments (e.g., dust, 
occlusion) indicates its readiness for broader 
applications. The cost and time required for this 
extension are minimized due to the reuse of the 
core system and the absence of architectural 
modifications. 

One of the most critical steps after designing 
and developing a model or algorithm is evaluating 
its performance. Sensitivity (true positive rate) 
and specificity or detectability (true negative rate) 
are two key metrics for statistically assessing the 
performance of classification results. When data 
can be divided into two groups, positive and 
negative, the performance of an experiment that 
categorizes information into these two groups can 
be measured and described using sensitivity and 
specificity indices. To measure performance, four 
parameters are required[45]. 

True Positive (TP): Correctly identified. 

 False Positive (FP): Incorrectly identified.  

True Negative (TN): Correctly rejected.  

False Negative (FN): Incorrectly rejected.  

One of the evaluation metrics for the proposed 
method is accuracy. This metric represents the 
ratio of the number of correct predictions made 
for samples of a specific class to the total number 
of predictions for samples of the same class.  

High values of accuracy indicate a low number 
of data points incorrectly classified into a specific 
class. This metric is calculated using the formula in 
Eq. (1). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

The next metric for evaluation is recall. This 
metric represents the ratio of the number of 
correctly classified data points in a specific class to 
the total number of data points that should have 
been classified into that class. 

 High values for this metric indicate a low 
number of data points that were incorrectly 
excluded from that specific class, and it is 
calculated using the formula in Eq. (2). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

The primary metric for evaluating the accuracy 
of object detection models is the mean Average 
Precision (mAP), which is calculated based on the 
Average Precision (AP) across various classes, as 
shown in Eq. (3). Here, N represents the number 
of classes. In general, APi indicates the average 
precision of class i over different IoU thresholds.  

These thresholds typically range from 0.5 to 
0.95, increasing in steps of 0.05. We utilize the 
mAP50 metric (threshold = 0.5) to assess the 
accuracy of the proposed model. 

𝑚𝐴𝑃 =
1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁

𝑖=1

      (3) 

Table 2 compares the frame rate (FPS) 
between the proposed model and the baseline 
YOLOv5 models. As shown in the table, the 
proposed method outperforms YOLOv5M, 
YOLOv5L, and YOLOv5X with a frame rate of 159 
FPS. This increase in processing speed offers 
several important advantages for industrial 
applications. A higher frame rate allows the 
system to process images faster and send 
necessary alerts to the operator. This is especially 
crucial in dynamic environments like mines, 
where shovels and vehicles are constantly moving. 
Additionally, industrial systems need to minimize 
the time between detection and action to prevent 
accidents.  

The 159 FPS rate of the proposed model 
minimizes processing delays and reduces the 
likelihood of accidents caused by such delays. 
Furthermore, the increased processing speed 
enables simultaneous analysis of multiple 
cameras installed around the mining site, which 
contributes to better coverage of blind spots and 
improved safety. 

Table 2. Comparison of the proposed model with several 
YOLOv5 baseline models in terms of speed 

Model FPS 

YOLOv5M 80 

YOLOv5L 65 

YOLOv5X 48 

Proposed model 159 

Table 3 presents the evaluation results for the 
baseline YOLOv5 models and the proposed model 
on the dataset of images created in this research, 
using input images with dimensions of 640×640. 
The results are shown based on various metrics, 
including precision, recall, and mAP50.   

As observed in Table 3, the proposed method 
achieves higher accuracy compared to all baseline 
models, with its mAP50 values being 4.7%, 4.4%, 
and 5.1% higher than YOLOv5M, YOLOv5L, and 
YOLOv5X, respectively. The results, with an 
average precision of 94.2%, indicate an 
improvement in the detection accuracy of the 
proposed model compared to the baseline 
YOLOv5 models.  

Therefore, by making modifications to the 
baseline model, the proposed network's detection 
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capability is enhanced, leading to more accurate 
detection in practical applications. 

Table 3. Comparison of the proposed model with several 
YOLOv5 base3line models in terms of accuracy 

Model mAP50 P R 

YOLOv5M 89.5 84.2 93.4 

YOLOv5L 89.8 85.7 92.3 

YOLOv5X 89.1 84.1 93.2 

Proposed model 94.2 90.6 96.1 

As previously mentioned, one of the most 
critical challenges in industrial environments, 
including mines, is ensuring the prevention of 
collisions between shovels and surrounding 
machinery. The operator's limited visibility, 
particularly due to blind spots and the specific 
structure of the shovel, often causes nearby 
machinery to remain undetected.  

This limitation significantly increases the risk 
of collisions, potentially leading to severe 
accidents. To mitigate these risks, a rapid 
detection system with a high frame rate (FPS) is 
essential. A high FPS ensures that the detection of 
machinery is performed quickly and without 
delay, allowing timely warnings to be issued to the 
operator. 

 Given the constant movement of shovels and 
surrounding machinery, even slight delays in 
detection can dramatically increase the likelihood 
of accidents. Our proposed method, based on the 
optimized YOLOv5 model, has demonstrated its 
ability to accurately detect machinery in all four 
directions around the shovel using real-world 
data collected from a copper mining environment.  

This precise and rapid detection effectively 
eliminates the blind spots of the shovel, 
minimizing the probability of collisions. 
Furthermore, the proposed system directly 
enhances the safety of personnel and prevents 
damage to expensive mining equipment. 

In the final evaluation section of the results, the 
proposed method was compared with other object 
detection methods. The results show that the mAP 
of the proposed method is 94.2, which is higher 
than that of other models. As shown in Table 4, this 
demonstrates its better performance in detecting 
vehicles around the shovel in the copper mine 
environment. 

 This improvement in accuracy and 
performance reflects the high reliability of the 
proposed model in the complex and variable 
environmental conditions of the mine, making it 
an effective tool for monitoring and safety in such 
environments. 

v. 5 shows the output of the proposed model on 
images from the copper mine dataset. As 
observed, the proposed model has successfully 
detected the vehicles around the shovel, indicating 
the high efficiency of the proposed method in 
accurately identifying vehicles in the mining 
environment. 

Table 4. Comparison of mAP values for different object 
detection methods 

Model mAP50 

Faster R-CNN 57.3 

Retinanet 58.4 

SSD 54.9 

YOLOv3 82.3 

YOLOv4 75.8 

YOLOv5 89.4 

Proposed model 94.2 
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Fig. 5. Detection results of the proposed model on the test 

dataset. 

4. CONCLUSION 

The findings of this research demonstrated 
that our proposed method, based on an improved 
YOLOv5 model, achieved high accuracy in 
detecting machinery around shovels in copper 
mining environments. The achieved accuracy of 
94% highlights the effectiveness of the model in 
accurately identifying machinery and its robust 
performance under complex and real-world 
conditions. With its rapid and precise image 
processing capability, the system can identify 
machinery around the shovel and prevent 
collisions, thereby directly enhancing workplace 
safety and protecting personnel.  

The proposed model can serve as a vital safety 
support system by detecting surrounding 
machinery and alerting operators to potential 
hazards. This capability is particularly beneficial 
in scenarios where the operator's visibility is 
limited, significantly reducing risks and 
preventing accidents. To further improve system 
performance under challenging environmental 
conditions, such as fog, rain, or low-light 
scenarios, it is recommended to integrate LiDAR 
sensors with the object detection model. LiDAR 
can provide accurate distance measurements and 
create detailed 3D maps of the surrounding 
environment, complementing the vision-based 
system. This integration can enhance the system’s 
accuracy and reliability, making it more effective 
in adverse conditions. In the future, this 
technology can be extended to other industrial 
environments, such as other mining operations or 
transportation industries. These systems not only 
improve workplace safety but also enhance 
operational efficiency and reduce costs associated 
with accidents, contributing to better overall 
industrial performance. 
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