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Keywords  Abstract 

Geo-statistical methods for reserve estimation are difficult to use 
when stationary conditions are not satisfied. Artificial Neural 
Networks (ANNs) provide an alternative to geo-statistical techniques 
while considerably reducing the processing time required for 
development and application. In this paper the ANNs was applied to 
the Choghart iron ore deposit in Yazd province of Iran. Initially, an 
optimum Multi Layer Perceptron (MLP) was constructed to estimate 
the Fe grade within orebody using the whole ore data of the deposit. 

Sensitivity analysis was applied for a number of hidden layers and neurons, different types of activation 
functions and learning rules. Optimal architectures for iron grade estimation were 3-20-10-1. In order to 
improve the network performance, the deposit was divided into four homogenous zones. Subsequently, all 
sensitivity analyses were carried out on each zone.  Finally, a different optimum network was trained and Fe 
was estimated separately for each zone. Comparison of correlation coefficient (R) and least mean squared 
error (MSE) showed that the ANNs performed on four homogenous zones were far better than the nets 
applied to the overall ore body. Therefore, these optimized neural networks were used to estimate the 
distribution of iron grades and the iron resource in Choghart deposit. As a result of applying ANNs, the 
tonnage of ore for Choghart deposit is approximately estimated at 135.8 million tones with average grade of 
Fe at 56.14 percent. Results of reserve estimation using ANNs showed a good agreement with the geo-
statistical methods applied to this ore body in another work. 
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1. INTRODUCTION 

Artificial Neural Networks (ANNs) have shown 
to be promising computational alternatives to the 
ore reserve estimation. A neural network is a 
computational model that is based on the neuron 
cell structures of the biological nervous system. 
Given a training set of data, the neural network can 
learn the data pattern with a learning algorithm. 
The ability of learning in ANNs provides an 
interesting alternative to the conventional geo-
statistical ore reserve estimation, especially 
where the second order stationary assumption 
about the spatial distribution of ore grade, within 
ore body, is not satisfied. Also, in Kriging the 
nearby sample points are used to estimate the 
grade of a specified location using a linear 
weighting (local fitting model), while in ANNs the 
grade of spatial variability is captured through the 
nonlinear input-output mapping via a set of 
connection weights (global fitting model). 

However, in ANNs method there is no need to 
calculate experimental variograms [1]. Geo-
statistical calculation requires large amount of 
samples, therefore with a small number of input 
data, the calculation of variograms become 
increasingly uncertain, even impossible [2]. Geo-
statistical calculations also require suitable 
computer programs and a considerable 
mathematical background [3]. The objective of 
present work is to examine the applicability of 
ANNs method to estimate the Fe grade at the 
Choghart iron ore deposit, in Yazd province of 
Iran. 

2. ARTIFICIAL NEURAL NETWORKS AND ORE 
RESERVE ESTIMATION 

For grade estimation using neural network, 
some data in the form of samples with known 
positions in 3D space are used as input data and 
grade attribute is used as an output for the 
respective data sets. The complex spatial structure 
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between input and output patterns is captured 
through a network via a set of connection weights, 
which are adjusted during training of the 
networks. The network captures an input–output 
relationship through training and acquires certain 
prediction capability so that for a given input 
(northing, easting and elevation coordinates) the 
network produces output (grade/grades). The 
network architecture that was used in the current 
analyses was a Multi Layer Perceptron (MLP) feed 
forward neural network. The advantage of using 
the MLP architecture is that this type of network is 
able to employ different activation functions in 
hidden and output layers. As a result, complex 
nonlinear input–output pattern is captured by a 
combination of multiple hidden units with 
different activation functions. 

Several researchers have applied neural 
networks for grade estimation in the past. Wu and 
Zhou investigated the ANNs approach for copper 
reserve estimation [4]. Rizzo and Dougherty used 
ANNs to characterize aquifer properties [5] and 
Singer and Kouda searched for a mineral deposit 
[6]. Yama and Lineberry explored ANNs in ore 
grade estimation [7]. Ke used an ANNs for ore 
grade estimation in a placer gold deposit in Alaska 
[8]. Koike et al. applied an ANNs to determine the 
principal metal contents of the Hokuroku district 
in northern Japan [9]. Koike and Matsuda also 
used this technique for estimating content 
impurities of a limestone mine such as SiO2, Fe2O3, 
MnO and P2O5 [10]. Samanta et al. [11] and Dutta 
et al. [12] applied an ANNs to study a bauxite 
deposit. Dutta also used an ANNs to study a placer 

gold deposit and Greenscreek polymetallic lode 
deposit [13].  

In usual grade estimation by ANNs, 
coordinates were applied as input parameters. 
Although in some cases additional parameters 
such as dependent grade attributes were also 
used. Misra et al. introduced one more Au input 
variable with the coordinate variables [1]. Also, 
Dutta et al. applied Au, Pb, Zn and Cu variables 
with the X and Y coordinates as input parameters 
to estimate As grade [12]. For grade estimation 
and mapping, the grade of all internal unknown 
points between known points should be 
estimated. While, the only distinct attributes of 
these points are coordinates. As a result, the use of 
additional parameters such as another dependent 
grade attribute may not be applicable in all cases.  

An introduction to MLP with back-propagation 
learning algorithm that has been used in this 
study, is presented in the following paragraphs. 

3. MULTILAYER FEED FORWARD NEURAL 
NETWORK (MFNN) 

In this work the model considered in the MFNN 
included three inputs and one output variables. 
This topology is shown in Figure 1. Input variables 
were northing (Y), easting (X) and elevation (Z) 
coordinates and the output is the Fe grade, i.e. 

),,( ZYXfG  . For example, a network having 

one hidden layer (with a log-sigmoid activation 
function) and one output layer (linear function) is 
depicted. 

 

Figure 1. Schematic diagram of MFNN with (3-25-1)-MLP topology (after Omid et al.) [14]. 

We name this network, a (3-25-1)-MLP 
topology, that is n=3 and m=25. In general, the 
value at the output unit is always the same for a 
certain set of input values. Therefore the output ĝ

(predicted Fe grade) can be seen as a function of 
the input values, X, Y and Z. The bias parameters,

)(h
jb  and )(o

b , may be viewed as weights from an 

extra input having a fixed value of one. The general 
expression for Fe operation can compactly be cast 
into:  
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Notice that the log-sigmoid and linear 
activation function are employed to the hidden 
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and output layers, respectively. Similar 
expressions, as in (2) and (3), and diagrams, as in 
Figure 1, can be given for more complex networks.  

The first step in developing MFNN deals with 
the definition of the network architecture, which 
is defined by the basic Processing Elements (PEs) 
i.e. neurons and their interconnections (layers). 
MLP are normally trained with error Back 
Propagation (BP) algorithm [15]. MLP learns the 
distribution of grades over the complete training 
set and is used for estimating grades at points 
inside the ore body. The knowledge obtained 
during training phase is not stored as equations or 
in a knowledge base, but is distributed throughout 
the network in the form of connection weights 
between neurons [16]. It is a general iterative 
solution method for weights and biases.  BP 
algorithm uses a Gradient Descent (GD) technique 
which is very stable but has slow convergence 
properties. Several methods for speeding up BP 
algorithm have been used including adding a 
momentum term or using a variable learning rate. 
The Levenberg-Marquardt (LM) algorithm that is 
used in this study is a modification of the Newton’s 
method for non-linear optimization. The LM and 
Newton methods use the gradient and other 
numerical quantities such as the Hessian matrix of 
the error surface, which consist of the 2nd order 
derivative of the error function. These methods 
are also based on the concept of quadratic 
approximation of the error function in a local 
region. If the error function is truly quadratic in 
nature, the Newton’s method finds the minimum 
solution in a single iteration. Therefore, the 
success of this technique depends upon how 
closely the error function resembles the quadratic 
function. Even the LM algorithm will diverge if the 
quadratic approximation is not appropriate. 
Searching for an optimal solution using this 
method requires the calculation of the inverse of 
the Hessian matrix, which should be positive 
definite. Newton’s method does not always 
guarantee the positive definiteness of Hessian 
matrix. The LM algorithm introduces a 
regularization term into the Hessian matrix so that 
positive definiteness of the Hessian matrix is 
guaranteed [13].  

The performance of the trained networks was 
measured by Mean Square Error (MSE) and 
coefficient of determination (R2) on another set of 
data (testing set), not seen by the network during 
training and cross-validation, between the 
predicted values of the network and the target (or 
experimental) values as follows [17]: 
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Where jĝ  is the network (predicted) output 

from observation j, jg  is the experimental output 

from observation j, g  is the average value of 

experimental output, and N is the total number of 
data observation. 

In this research work, NeuroSolutions 
software Version 5.0 [18] was used for the design 
and testing of MFNN models. To develop a 
statistically sound model, the networks were 
trained several times (three) and the average 
values were recorded for each parameter. To 
avoid ‘overfitting’, the MSE of the validating sets 
was calculated after adjusting of the weights and 
biases. The training process continued until the 
minimum MSE of the validating sets was reached 
early-stopping scheme. 

4- CHOGHART IRON ORE DEPOSIT 

For this study, Choghart iron ore deposit was 
selected. Choghart iron mine is located at 12km 
north-eastern of Bafq city and 125km south-
eastern of Yazd city, Iran (Figure 2). Conventional 
open pit mining method is used to extract 134 
million tones of ore reserve at an annual rate of 3 
million tones. The initial open pit mine was 
developed at an elevation of 1286m above mean 
sea level (150 meter from surrounding regions) in 
1971 and will be continued down to the elevation 
of 812.5m. There are about 137 drill holes in the 
whole region.  

 

Figure 2. The location of the Choghart iron ore 
deposit [22]. 
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Figure 3 shows the 3D displaying of the spatial 
location of boreholes in Choghart deposit. Iron is 
the main constituent of the deposit. Due to the 
extent and richness of the Choghart deposit, the 

area was studied extensively, and geological, 
geophysical and geochemical characteristics of 
deposit are well documented in the published 
literatures [19-21]. 

 

Figure 3. A schematic 3D presentation of the spatial location of the boreholes in Choghart deposit. 

5- DATA PREPARATION 

In order to use neural network method for 
estimation of ore reserve, several data 
preparation steps need to be performed: 

5-1 Preparation of composite data 

Using raw data for training neural network has 
following problems; 1- network will be unable to 
be trained due to intense spatial grade variability 
2- trained network will have weak validation 
results because of overtraining problem. As the 
core sample lengths are not equal, to overcome 
this problem the data samples are composited in 
equal length. Thus, the raw data obtained from 
137 drill holes are composited in 3.3m (equal to 
the average length of cores in one drilling run) 
using a moving average method to make ore grade 
changes in a smoother manner (Figure 4). 

5-2- Separation of the ore from waste 

Using the ore and waste composites data in the 
grade estimation procedure will cause an 
overestimation in tonnage and underestimation in 
average grade. Thus, data were separated in two 
groups of ore and waste composites and only 
composites inside the ore body were used in ore 
grade estimation. Finally, these data were 
collected in terms of easting (X), northing (Y) and 
elevation (Z) coordinates, and Fe grade. 

5-3-Determination of outlier data 

Outliers are the data that have a meaningful 
difference with the others or with the mean. These 
differences may be due to experimental errors, 
which sometimes occur during sampling, 
preparation or analysis. These data should be 
removed from inputs. In this study the Box-plot 

chart method was used for this purpose. However, 
no outlier was found. 

 

Figure 4. Raw data vs. composited Fe grades in an 
example borehole. 

5-4- Data normalization  

As the final step of data preparation, the data 
were normalized into [-1, 1]. In general, an 
artificial neural network has no natural tendency 
to be trained on very high or very low values. The 
major aim of normalization is to increase network 
training ability on these values. 

5-5- Preparation of subdatasets  

For ANNs analysis, three datasets are needed: 
a training set, a validation set and a test set. For 
valid results, these three sets of data should be 
statistically similar. Normally, the training set 
should comprise a major chunk of the dataset so 
that the network learns the input/output patterns 
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properly. The validation set is basically used as an 
independent observer and the test dataset is used 
for model validation. It is a general practice to 
divide the entire dataset into three subsets, where 
members of each subset are chosen randomly. 
However, Bowden et al. cited several problems 
with random data division and cautioned to use 
this approach blindly [23]. In this regard, Samanta 
et al. [11, 24] have reported successful 
applications of a Genetic Algorithm (GA) to 
generate statistically similar datasets. But due to 
very large data set and low nugget effect, random 
data division was used to divide the data in the 
problem studied here. Hence, 1952 samples have 

been chosen as training set, 450 samples as 
validation set and the remaining 601 data, 
selected as testing. 

6- DESIGNING OF ESTIMATION SPACE 

Initially, before designing network, estimation 
space should be determined. Estimation space is a 
space that should be girded using blocks. The 
block model characteristics for the calculation of 
Fe grade are shown in Table 1. Also, a sub blocking 
factor for better edge detection and prevention of 
overall tonnage overestimation, was considered. 

Table 1. The block model characteristics in Choghart deposit. 

Sub 
blocking 

 block size 
Maximum 

coordinates 
Minimum 

coordinates 
coordinates 

6.25 25 8800 7590 Y 

6.25 25 5200 4500 X 

3.125 12.5 1100 800 Z 

 

Based on information in Table 1, a 3D block 
model of ore body and surrounding waste 
material was built, using SURPAC 6 software [25]. 

This block model was then constrained by 
geological boundaries. These boundaries obtained 

from geological mapping of boreholes, blast holes 
and outcrops. The advantage of using this 
boundary was that, it helped us to exclude the 
waste materials, thus, we could prevent tonnage 
overestimation. Figure 5 shows the ore body 3D 
block model in the Choghart deposit.  

 

Figure 5. A schematic view of ore body 3D block model of Choghart deposit, confined by geologic boundary. 

Because the mixture of samples from different 
ore zones resulted in forming multiple population, 
it is usually suggest to separate data to 
homogenous different zones. Therefore, the next 
step is to define domains in order to identify more 
than one possible population within the input 
data. Geological 3D fault model that shows the 
spatial relationship between the geologic faults 
and the ore body, identified four populations 
(homogenous zones) within Choghart ore body. 
Figure 6 depicts the identified four populations in 
Choghart deposit. Therefore, input data were 
classified into 4 groups, each of them coincides 

with each population. Then grade estimation was 
done within each domain separately. In the next 
section the effects of population separation on the 
estimated grades will be investigated.  

7- OPTIMUM NETWORK DESIGN 

7-1- Designing of optimum network using the whole 
data set 

In this section, the whole input data set were 
used in the grade estimation process. During 
network training and learning, network 
parameters should be adapted through a 
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continuing process of stimulation by the 
environment in which the network is embedded. 
The accuracy of learning is determined by the 
manner that parameters are optimized [8]. These 
parameters are optimized using sensitivity 
analysis and will be discussed in detail in the 
following section. 

 

Figure 6. Four populations within the Choghart ore 
deposit (solid lines represent the major faults and 
the block boundaries (homogenous zone), dashed 
lines indicates the mine pit boundary) [21]. 

In MLPs, these parameters are: number of 
hidden layers, number of hidden units, learning 
algorithms and activation functions. Sensitivity 
analysis are carried out to choose the number of 
layers, the number of neurons of middle layers 
and activation functions, respectively.  

7-1-1- Sensitivity analysis of hidden layers 

In most situations, there is no easy way to 
determine the best number of hidden layers 
without training several networks and estimating 
the generalization error. Several “rules of thumb” 
for choosing the hidden layer Processing Elements 
(PEs) have been suggested in the published 
literatures [26-29]. These rules of thumb cannot 
be generalized, because they are not always valid 
for all training cases. The optimum number of 
hidden layers (and also hidden units in each layer) 
depend on the complexity of network 
architecture, the number of input and output 
units, the number of training samples, the degree 
of the noise in the sample data set, the training 
algorithm and the training criteria [8]. Hence, the 
parameters of hidden layers are commonly 
defined by performance measurements using trial 
and error procedure. 

As described in previous section, the sample 
data obtained from 137 drill holes. Three inputs 
and one output were used. In this work for 
sensitivity analysis to choose optimum number of 
hidden layers, the MFNN architecture was used for 
training, with the following characteristics: LM 
training algorithm, LogSig transfer function for 

hidden layers and MSE increase training stop 
criteria. The results of this analysis are presented 
in Table 2. 

Table 2. Results of sensitivity analysis of hidden 
layers (in whole set of Choghart data) 

MSE R value Training time Hidden layers 

80.0 0.41 00:00:50 0 

54.3 0.66 00:25:47 1 

47.6 0.71 01:10:36 2 

48.8 0.70 04:19:12 3 

Table 2 indicates that, with zero-hidden layer, 
convergence is obtained in a short time. The 
performance, however, is poor with a low R value 
of 0.41 and a high MSE value of 80. On the other 
hand, with one-hidden-layer, values of R and MSE 
are not good enough yet. But with two-hidden-
layers or three-hidden-layers, the results are 
better. With regard to the training time, R value 
and MSE, two-hidden-layers architecture is 
chosen as an optimum one. 

7-1-2- Sensitivity analysis of neurons in hidden 
layers 

Selecting the number of hidden units does 
greatly influence the performance of training a 
network. As in the case of number of hidden 
layers, the best number of hidden units is difficult 
to determine. Several factors, such as the network 
architecture, the degree of noise, the number of 
hidden layers and the complexity of the function 
have to be taken into account in selecting the 
number of hidden units. 

As discussed above, the number of hidden 
units depends on several factors. For the statistical 
analysis, many networks with different number of 
hidden units were examined to estimate the 
training and the generalization errors for each 
case. Then, the network with minimum estimated 
generalization error was selected. Based on the 
results of Table 2, the network with two hidden 
layer was selected. Therefore, two separate 
analyses need to be carried on layers. 

For the first analysis, the number of second 
hidden-layer-neurons fixed on 4, and analysis 
carried on first hidden layer. Results of these 
analyses are shown in Figure 7. It can be seen that 
the number of 20 neurons with the minimum 
cross validation error, is the best for the first 
hidden layer. The same analysis carried on second 
hidden layer, while the first hidden units were 
fixed on 20 (Figure 8). It can be seen that, the 
number of 10 neurons for the second hidden layer 
is the best and has the minimum validation MSE. 
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Figure 7. Average of MSE vs. the number of first 
hidden layer neurons. 

 

Figure 8. Average of MSE vs. the number of second 
hidden layer neurons. 

7-1-3- Sensitivity analysis of activation functions 

As noted by Suykens et al. [30], transfer 
functions in neural networks could be selected 
based on the type of application. Also, Ke et al. 
have tested the influence of various activation 
functions on ANNs in a gold deposit [31]. In line 
with that, this section explores the effect of the 
various transfer functions in Choghart ore 
modeling exercise. 

7-1-3-1- Influence of transfer functions on hidden 
layers 

In order to analyze the influence of transfer 
functions on hidden layers, several transfer 
functions including logistic, Tanh, Linear and 
Gaussian were tested. Then in order to determine 
model performance the predicted Fe values for 
each transfer function was compared to the 
known true value. As mentioned above this 
comparison was carried out by obtaining R and 
MSE values. Figures 9 and 10 show the R and MSE 
values for various types of transfer functions on 
the hidden layers. 

As can be seen, the logistic sigmoid transfer 
function performs better than the other functions. 
Also, the Tanh function is the second best one for 
using as hidden layer transfer function. 

 

 

Figure 9. R value for various transfer functions on 
hidden layer. 

 

Figure 10. MSE value for various transfer functions 
on hidden layer. 

7-1-3-2- Influence of transfer functions on output 
layer 

Although usually linear transfer is the selected 
function for the output layer, but due to the nature 
of this case, the sensitivity analysis was used to 
select the function. To analyze the influence of 
transfer functions on output layer, several transfer 
functions were used. Figures 11 and 12 show the 
R and MSE values for various types of transfer 
functions. As it is clear from these figures, linear 
transfer function is the best choice for output 
layer. 

 

Figure 11. R value for various transfer functions on 
output layer. 
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Figure 12. MSE value for various transfer functions 
on output layer. 

7-1- 4- Comparison between predicted values and 
actual values 

To investigate the accuracy of neural network 
modeling, the overall performance was also 

confirmed by the comparison between predicted 
values and actual values (Figure 13). As it can be 
seen, there is good agreement between two 
values.  

7-2- Designing optimum networks within each 
domain 

As discussed before, in order to increase 
network capability for grade estimation purpose, 
data were classified into four populations. 
Subsequently, all sensitivity analyses like those 
described previously, were carried out on each 
domain. Thus, in each domain, analyses such as 
network selection, number of hidden layers, 
number of hidden neurons, learning rules and 
activation functions, were carried out and the 
optimum network was selected according to the 
obtained sensitivity analyses results. Finally, four 
optimal networks were selected for each group of 
data. Table 3 shows these optimal networks.  

 

Figure 13. Predicted values (obtained from designed neural network) vs. actual values. 

Table 3. Optimum networks characteristics and their testing results, in different populations. 

R-value MSE 
Learning 

rule 
Activation 
function 

No. of Hidden 
layers 

Population 
No. 

0.70 25.4 Mom Tanh 3 1 

0.73 23.2 LM LogSig 1 2 

0.74 23.5 Mom LogSig 4 3 

0.77 20.3 LM LogSig 1 4 

 

8- RESULTS AND DISCUSSION 

To estimate the reserve of Choghart iron ore 
deposit, first, estimation was carried out within 
the ore body. Then, the orebody was split into 
blocks whose dimensions are determined 
according to the deposit extent and open pit 
design parameters such as mining bench height. 

After that, the grade was estimated for each 
block using ANNs. Designing optimal neural 

network was carried out by various sensitivity 
analyses including; network type, number of 
hidden layers, number of hidden units, learning 
rule and activation functions. In these work, the 
networks capability was measured using 
networks efficiency in grade estimation, for test 
data series, by means of R and MSE values. 

The optimal network characteristics are 
shown in Table 4. It can be seen that the optimal 
network is a MLP with two hidden layers and 3-
20-10-1 architecture. The generalization 
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capability of this network was tested and the 
results are presented in Table 5.  

Table 4. Optimum network characteristics 

Attribute Comments 

Network type Multi-layer perceptron 

Architecture 3-20-10-1 

Hidden-layers activation 
function 

Logistic sigmoid 

Output-layer activation 
function 

Linear 

Learning rule Levenberg-Marquardt 

Table 5. Optimum network testing results 

Performance Fe 

MSE 47.62 

NMSE 0.50 

MAE 4.57 

Min Abs Error 0.0027 

Max Abs Error 38.86 

R 0.71 

As mentioned before, for more investigation 
and to decrease the grade estimation error, it was 
decided to subdivide the estimation space into 
smaller and more homogenous zones. Therefore, 
the deposit was divided into four sub-zones that 
fitted into four main tectonic zones. Subsequently, 
the designing of neural network was conducted 
within each zone, separately. To achieve this aim, 
all sensitivity analyses similar to those described 
above, were performed within each zone and the 
optimum networks were selected. The 
characteristics of four optimal networks in four 
different zones and also that of in the whole 
deposit are shown in Table 6.  

Table 6. Comparison among the network 
characteristics of four  homogenous zones to the 
whole deposit in Choghart 

Domain MSE R-value 

1 25.4 0.70 

2 23.2 0.73 

3 23.5 0.74 

4 20.3 0.77 

Whole deposit 47.6 0.71 

Table 6 presents the testing results of 
networks on different domains. Correlation 
coefficients of all networks are more than 0.7 and 
less than 0.77. Accordingly, there is no significant 
improvement in R-value. However, R-value in 
domain 4 has a meaningful prominence with 
respect to whole deposit domain. But MSE values 
show that optimal networks in domains 1 to 4 
have a noticeable superiority in comparison with 

the optimum network without population 
separation. Thus dividing deposit into four sub-
zones was successful in networks capability 
improvement.   

Ore grade distribution in different altitudinal 
levels were estimated by the final neural network. 
An example of this type of estimation, at 1000 
elevation of Choghart deposit, is shown in Figure 
14. 

 

Figure 14. A schematic plan of ore distribution at the 
1000 meter elevation, estimated by Artificial Neural 

Network. 

The results of this work was compared to the 
results of the reserve estimation of Choghart 
deposit using geostatistical method [21]. The ore 
reserve estimation results of both ANNs and 
geostatistics in every bench are presented in 
Figure 15. 

 

Figure 15. Comparison between ANNs and Kriging 
reserve estimation results. 

As it can be seen from Figure 14, there is a good 
agreement between the results of ANNs and 
geostatistics. 
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9- CONCLUSION 

This study is focused on the neural network 
modeling for the estimation of Choghart iron ore 
reserve. Due to the spatial variability, multiple 
dimensional inputs and very noisy drill hole 
sample data from the selected region, it required 
that the neural network be organized in multiple-
layers to handle the non-linearity. Various neural 
network architectures were investigated and the 
back propagation was selected for modeling the 
ore reserve estimation. Sensitivity analysis was 
performed for the following parameters: number 
of hidden layers and hidden neurons, type of 
activation functions, learning rules. The influences 
of these parameters on the predicted output were 
analyzed in details and optimal parameters were 
determined. To investigate the accuracy and 
promise of neural network modeling as a tool for 
ore reserve estimation, the overall performance 
was also validated by the analysis of correlation 
coefficient (R), mean squared error (MSE), and the 
comparison between predicted values and actual 
values. Finally optimal architecture for iron grade 
estimation was 3-20-10-1. Values of R and MSE for 
iron grade estimation were 0.71 and 47.6, 
respectively. For more investigation and to 
increase the network capability for grade 
estimation purpose, data were classified into four 
populations. Subsequently, all sensitivity analyses 
were carried out on each domain. Afterwards, the 
optimum network was selected according to 
analyses results. Finally four optimal networks 
were selected for four distinct domains. These 
networks were tested and the obtained results 
were compared with overall optimum net results. 
The results of this comparison showed that these 
nets perform far better than the overall one. As the 
final part of this study, the optimized neural 
networks were used to estimate the distribution of 
iron grades and the volume of iron resource in 
Choghart deposit. As a result of ANNs, the tonnage 
estimation of ore between 800m-1100m 
elevations for Choghart deposit was 
approximately 135.8 million tones with average 
grade of 56.14 percent Fe. 
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