[2] Shen, J., Karakus, M., & Xu, C. (2012). Direct expressions for linearization of shear strength envelopes given by the Generalized Hoek–Brown criterion using genetic programming. Computers and Geotechnics, 44, 139–146.
[3] Labuz, J.F., & Zang, A. (2012). Mohr–Coulomb Failure Criterion. Journal of Rock Mechanics and Rock Engineering, 45, 975–979.
[4] Shen, J., Priest, S.D., & Karakus, M. (2012). Determination of Mohr–Coulomb Shear Strength Parameters from Generalized Hoek–Brown Criterion for Slope Stability Analysis. Journal of Rock Mechanics and Rock Engineering, 45(1), 123–129.
[6] Mohammadi, M., & Tavakoli, H. (2015). Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane. Geomechanics and Engineering, 9(1), 115-124.
[7] Brown, E.T. (2008). Estimating the mechanical properties of rock masses. In: Proceedings of the 1st southern hemisphere international rock mechanics symposium: SHIRMS 2008, Perth, Western Australia 1, 3–21.
[8] Wyllie, D.C., & Mah, C. (2004). Rock slope engineering: civil and mining" 4th edn. Spon Press, New York.
[9] Hoek, E. (1983). Strength of jointed rock masses. Ge´otechnique, 33(3), 187–223.
[10] Hoek, E. (1990). Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. International Journal of Rock Mechanics & Mining Sciences, 27(3), 227–229.
[11]
Amoushahi, S.,
Grenon, M.,
Locat, J., &
Turmel, D. (2018). Deterministic and probabilistic stability analysis of a mining rock slope in the vicinity of a major public road — case study of the LAB Chrysotile mine in Canada. Canadian Geotechnical Journal , 55(10), 290-310.
[13] Hoek, E., & Brown, E.T. (1997). Practical estimates of rock mass strength. International Journal of Rock Mechanics & Mining Sciences, 34(8), 1165–1186.
[14]
Park, P., &
Michalowski, R.L. (2021). Three-dimensional stability assessment of slopes in intact rock governed by the Hoek-Brown failure criterion. International Journal of Rock Mechanics & Mining Sciences, 137, 104522.
[15]
Yang, S.Q.,
Chen, M.,
Jing, H.W.,
Chen, K.F., &
Meng, B. (2017). A case study on large deformation failure mechanism of deep soft rock roadway in Xin'An coal mine, China.
Engineering Geology, 217, 89-101.
[16] Fu, W., & Liao, Y. (2010). Non-linear shear strength reduction technique in slope stability calculation.
Computers and Geotechnics, 37, 288–298.
[17] Yang, X.L., & Yin, J.H. (2010). Slope equivalent Mohr–Coulomb strength parameters for rock masses satisfying the Hoek–Brown criterion.
Rock Mechanics and Rock Engineering, 43(4), 505–511.
[18] Chen, Y., & Lin, H. (2019). Consistency analysis of Hoek–Brown and equivalent Mohr–coulomb parameters in calculating slope safety factor. Bulletin of Engineering Geology and the Environment, 78, 4349–4361.
[19] Zachariev, G., (2016). A Statistical Theory of the Damage of Materials. Modern Mechanical Engineering, 6, 129-150.
[20] Kim, K., & Gao, H. (1995). Probabilistic approaches to estimating variation in the mechanical properties of rock masses. International Journal of Rock Mechanics & Mining Sciences Geomech Abstr, 34, 111–120.
[21] Chen, Y., Lin, H., Li, S., Cio, Y., Yong, W., Wang, Y., & Zhao, Y. (2022). Shear expression derivation and parameter evaluation of Hoek–Brown criterion. Archives of Civil and Mechanical Engineering, 22(77),
https://doi.org/10.1007/s43452-022-00403-x
[22] Sari, M., (2009). The stochastic assessment of strength and deformability characteristics for a pyroclastic rock mass. International Journal of Rock Mechanics & Mining Sciences, 46(3), 613– 626.
[23] Sari, M., Karpuz, C., & Ayday, C. (2010). Estimating rock mass properties using Monte Carlo simulation: Ankara andesites. Computers & Geosciences, 36(7), 959–969.
[24] Idris, M., Saiang, A.D., & Nordlund, E. (2011). Numerical Analyses of the Effects of Rock Mass Property Variability on Open Stope Stability. American Rock Mechanics Association.
[25] Rabiei Vaziri, M., Azizabadi, H.R., & Kariminasab, S. (2015). Estimating the Shear Strength Parameters of Rock Mass using Monte Carlo Method. " Iranian Journal of Mining Engineering, 10(27), 69- 80. (In Persian)
[26]
Mehrishal, S.A., (2021). Development of an analytical method for the calculation of the Mohr-Coulomb failure envelope. Journal of Analytical and Numerical Methods in Mining Engineering, 11(27), 19-29. (In Persian)
[27] Li, S., Zhang, Y., Cao, M., &
Wang, Z. (2022). Study on Excavation Sequence of Pilot Tunnels for a Rectangular Tunnel Using Numerical Simulation and Field Monitoring Method. Journal of Rock Mechanics and Rock Engineering, 55, 3507–3523.
[30] Mohammadi, M., (2021). Developing an Applied Method for Determining Geomechanical Parameters of Rock Mass Considering Uncertainty. Journal of Mineral Resources Engineering and the Iranian Mining Engineering, , 6(3), 99-114.
[31] Balmer, G., (1952). A general analytical solution for Mohr’s envelope. Am Soc Test Mater, 1269–1271.
[32] Yang, S., Tian, W. & Ranjith, P.G. (2017). Experimental Investigation on Deformation Failure Characteristics of Crystalline Marble Under Triaxial Cyclic Loading. Journal of Rock Mechanics and Rock Engineering, 50, 2871–2889.
[33]
Douglas, C., (2003). Applied Statistics and Probability for Engineers 6th Edition. John Wiley & Sons, Inc.
[34] You, M., (2010). Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses." International Journal of Rock Mechanics & Mining Sciences,47(2),195–204.