[1] Dowd, P.A., (1986). Geometrical and geological controls in geostatistical estimation and ore body modelling. In: R.V. Ramani (Editor), Proceedings of the 19th APCOM Symposium. Society of Mining Engineers, Littleton, Colorado, pp. 81-99.
[2] Duke, J.H., and Hanna, P.J., (2001). Geological interpretation for resource modeling and estimation. In: A.C. Edwards (Editor), Mineral Resource and Ore Reserve Estimation – The AusIMM Guide to Good Practice. The Australasian Institute of Mining and Metallurgy, Melbourne, Australia, pp. 147-156.
[3] Sarkar, B.C., O’ Leary, J., and Mill, A.J.B., (1990). Computer based geological -geostatistical evaluation system. In: Proceedings of the 22nd International Symposium on Application of Computers and Operations Research in the MineralIndustry. Tech. Univ. Berlin, Berlin, Germany, v. 2, pp. 601-612.
[4] Stegman, C.L., (2001). How domain envelopes impact on the resource estimate – Case studies from the Cobar gold field, NSW, Australia. In: A.C. Edwards (Editor), Mineral Resource and Ore Reserve Estimation – The AusIMM Guide to Good Practice. The Australasian Institute of Mining and Metallurgy, Melbourne, Australia, pp. 221-236.
[5] Journel, A., and Huijbregts, C. (1978). Mining Geostatisfics. New York: Academic Press, pp. 597.
[6] Emery, X., González, K., (2006). “Probabilistic modeling of geological units in a Chilean porphyry copper deposit”, in: 2nd International Conference on Mining Innovation MININ 2006. J.M. Ortiz, R. Guzmán, E. Rubio, F. Henríquez and P. Lillo (eds.), Impresos Socias Ltda, Santiago, Chile, p. 465-476.
[7] Deutsch, C.V. (2006): A sequential indicator simulation program for categorical variables with point and block data: BlockSIS, Computers & Geosciences 32: 1669–1681
[8] Dimitrakopoulos, R. (1998). Conditional simulation algorithms for modelling orebody uncertainty in open pit optimisation. International Journal of Surface Mining, Reclamation and Environment, p. 173-179.
[9] Emery, X. (2005): Properties and limitations of sequential indicator simulation. Stochastic Environmental Research and Risk Assessment 6: 414-424
[10] Dowd, P. (1994). Optimal Open Pit Design: sensitivity to stimated block values. Geological Society, London, Special Publications, v. 79, p. 87-94.
[11] Journel, A.G., (1989) Fundamentals of geostatistics in five lessons. American Geophysical Union Publication, Washington, DC, pp. 40.
[12] Vistelius, A.B. (1989): Principles of Mathematical Geology. Kluwer Academic Publishers, Dordrecht, p. 500
[13] Caceres, A., Emery, X., Aedo, L., Gálvez, O. (2011): Stochastic geological modeling using implicit boundary simulation, Geomin 2011, Santiago, Chile, 7 p.
[14] Skewes, M. A., Holmgren, C., Stern, C. R., (2002).The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids. Springer-Verlag, Mineral Deposita. 20 pp. 2-21.
[15] Deutsch, C., and Journel, A. (1998). GSLIB: Geostatistical Software Library and User’s Guide. New York: Oxford University Press, pp. 384.
[16] Duggan, S. y., Dimitrakopoulos, R. (2005). Application of conditional simulation to quantify uncertainty and to classify a diamond deflation deposit. Geostatistics Banff v.14pp. 419-428