]1[ Ahmadi, R., Fathianpour, N., & Norouzi, G.H. (2016). Detecting cylindrical targets characteristics hidden in GPR images using artificial neural network and template matching, Journal of Engineering Geology, 9(4), 3069-3092 (In Persian).
]2[ Ahmadi, R., Fathianpour, N., & Norouzi, G.H. (2016). Comparison of the performance of ANN and SVM methods in automatic detection of hidden cylindrical targets in GPR images, Iranian Journal of Mining Engineering (IRJME), 10(26), 83-98 (In Persian).
]3[ Hosseini, M., Kamkar-Rouhani, A., Mohammadi-Vizhe, M., & Parnow, S. (2017). Importance of three-dimensional ground penetrating radar surveys in accurate display of the images of subsurface installations, Case study: Shahrood University of Technology, Journal of Research on Applied Geophusics (JRAG), 2(2), 67-76 (In Persian).
[4] Shihab, S., & Al-Nuaimy, W. (2005). Radius estimation for cylindrical objects detected by ground- penetrating radar, Subsurface Sensing Technologies and Applications, Vol. 6, pp. 151-166.
[5] Toksoz, D., Yilmaz, I., Seren, A., & Mataraci, I. (2016). A study on the performance of GPR for detection of different types of buried objects, Procedia Engineering, Vol. 161, pp. 399–406.
[6] Zhang, P., Guo, X., Muhammat, N., & Wang, X. (2016). Research on probing and predicting the diameter of an underground pipeline by GPR during an operation period, Tunnelling and Underground Space Technology, Vol. 58, pp. 99–10
[7] Ahmadi, R., & Fathianpour, N. (2017). Estimating geometrical parameters of cylindrical targets detected by Ground-Penetrating Radar using template matching algorithm, Arab J Geosci, pp. 10: 140.
[8] Sadiku, M.N.O. (2001). Numerical techniques in electromagnetics. Second edition, Boca Raton London New York Washington, D.C. CRC press.
[9] Annan, A.P. (2002). The history of ground-penetrating radar, Subsurface Sensing Technologies and Applications, 3(4), pp. 303–320.
[10] Annan, A.P. (2001). Ground-penetrating radar workshop notes, Sensors and Software Inc, Mississauga, ON, Canada, 192 pages.
[11] Annan, A.P. (2003). Ground- penetrating radar: Principles, procedures & applications, Sensors & Software Inc. Technical Paper.
[12] Annan, A.P., & Cosway, S.W. (1992). Ground-penetrating radar survey design, Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP’92, April 26-29, Oakbrook, IL, pp. 329-351.
[13] Poluha, B., Porsani, J.L., Almeida, E.R., Santos, V., & Allen, S.J. (2017). Depth estimates of buried utility systems using the GPR method: studies at the IAG/USP geophysics test site, DOI: 10.4236/ijg.2017.85040.
[14] Davis, J.L., & Annan, A.P. (1989). Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37, pp. 531-551
[15] Viola, P., & Michael, J. J. (2001). Rapid object detection using a boosted cascade of simple features, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume: 1, pp. 511–518.
[16] Lienhart, R., Kuranov, A., & Pisarevsky, V. (2003). Empirical analysis of detection cascades of boosted classifiers for rapid object detection, Proceedings of the 25th DAGM Symposium on Pattern Recognition. Magdeburg, Germany.
[17] Ojala, T., Pietikäinen. M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, In IEEE Transactions on Pattern Analysis and Machine Intelligence. Volume 24, Issue 7, pp. 971-987.
[18] Kruppa, H., Castrillon-Santana, M., & Schiele, B. (2003). Fast and robust face finding via local context, Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 157–164.
[19] Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Volume 1, pp. 886–893.