Numerical analysis of disc cutter forces in linear rock cutting procedure using finite element method

Document Type : Research Article

Authors

1 Dept. of Mining, Zanjan University, Iran

2 Dept. of Engineering, Tarbiat Modares University, Tehran, Iran

10.29252/anm.2019.8036.1275

Abstract

Summary
One of the most important results of the linear rock cutting process is the accurate estimation of the cutting forces applied to the disc cutter which can be a prelude to the development of models for predicting the performance of all tunnel boring machines (TBM). In this study, numerical modeling of rock cutting process by a disc cutter using finite element code ABAQUS has been implemented. For model validation, the results of the linear cutting machine tests (LCM) by Previous researchers have been applied. After solving the proposed model, the forces on the disc were calculated in three directions of the rock cutting model and the mean of each force was calculated by a code that was developed in MATLAB software. Comparison of laboratory results and numerical modeling shows 11.1% error for the mean normal force, 5.6% error for the average rolling force, and 10% error for the average lateral force. By comparing the results of numerical modeling and linear cutting experiments, we can conclude that there is a good agreement between them.
 
Introduction
In this study, a numerical model of linear rock cutting process based on finite element method (commercial code  ABAQUS) was used. To validate the proposed model, Rostami's (1997) linear rock cutting test on the Indiana limestone sample was used. Due to the unavailability of this rock sample, data from other texts were used to obtain input parameters to the model. A model assembly with a single disc cutter similar to laboratory test was simulated. By solving the proposed model, the forces applied to the cutter were calculated.
 
Methodology and Approaches
In order to model linear rock cutting procedures, Commercial finite element code ABAQUS/CAE was employed and for validating that, laboratory linear rock cutting test by Rostami (1997) was considered. Rock and disc cutter models was built in ABAQUS GUI module and to simulate rock behavior of rock model, a linear strength criterion was implemented in the model. Boundary Condition for disc cutter was similar to TBM’s working status with linear velocity of 2 meter per seconds and angular velocity of 9.3 radians per seconds.
 
Results and Conclusions
Modeling shear forces showed a similar trend to the experimental results. On the other hand, the comparison of the cutting forces of the experimental test with the numerical model results showed 11.1, 5.6 and 10% differences for the normal, rolling and lateral forces, respectively. This discrepancy seems to be due to the complexity and nonlinearity of the rock-cutting problem and the impossibility of considering all the parameters governing to rock-cutting process with a natural disc cutter. However, further analysis is being done by modeling on other rock samples to confirm the results.

Keywords

Main Subjects


حفاری مکانیزه و یا حفر مکانیکی به هر روشی‌ اتلاق می‌شود که در آن از یک ابزار مکانیکی برای جدا کردن سنگ یا خاک از موقعیت آن استفاده می‌شود. امروزه حفاری مکانیکی، جنبه رایجی از ساخت‌وسازهای زیرزمینی از جمله احداث تونل‌ها، چاه‌ها و استخراج مکانیزه منابع زیرزمینی را در برگرفته است.

از مهم‌ترین مسائل موجود برای کاربرد موفقیت‌آمیز ماشین­های حفر مکانیزه، بهینه­سازی طراحی و برآورد دقیق عملکرد آنها بوده است. بهینه­سازی طراحی به معنای رعایت ملزومات مورد مطالعه ماشین برای مواجهه با شرایط پیچیده زمین و طراحی اجزاء آن (مثل کله حفاری) به ‌منظور کسب عملکرد بهینه است که در نهایت نرخ تولید قابل‌دستیابی را ممکن می­سازد، به نحوی ‌که هزینه و اقتصاد پروژه را نیز در نظر می­گیرد. علی­رغم توانایی‌های موجود برای برآورد دقیق­تر عملکرد این ماشین‌ها، کماکان نیازمند بهبودهایی خواهد بود.

محققان زیادی بر روی مسئله برش سنگ با تیغه دیسکی طی چهار دهه اخیر پژوهش کردند. تمرکز پژوهش از فرو روی[i]یک برش­دهنده دیسکی در سنگ برای برآورد شکنندگی سنگ تا برآورد نیروهای برش در فرآیند برش سنگ با خصوصیات مشخص مکانیکی بوده است. اخیراً پیشرفت­هایی در زمینه شبیه­سازی فرآیند برش سنگ با مدل­های عددی مانند روش المان محدودو روش المان مجزا انجام‌گرفته است[1]. کاربرد روش­های عددی بر اساس محیط پیوسته برای حل این مسئله موفقیت قابل‌توجهی را کسب نکرده است، چرا که از هم پاشیدگی قطعات سنگی در این روش، زیر سؤال می‌رود. این ضعف با پیشرفت­هایی که اخیراً در روش المان محدود حاصل‌شده است، جبران شده است به ‌نحوی‌که قابلیت شبیه‌سازی شکست در سنگ از طریق حذف المان‌هایی که به آستانه شکست کششی خود می‌رسد، انجام می­پذیرد[2].



[i] Identation

[1]           Lawn, B.; Swain, M., Microfracture beneath point indentations in brittle solids. Journal of Materials Science 1975, 10 (1), 113-122.
[2]           Cho, J.-W.; Jeon, S.; Jeong, H.-Y.; Chang, S.-H., Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement. Tunnelling and Underground Space Technology 2013, 35, 37-54.
[3]           Bilgin, N.; Tuncdemir, H.; Balci, C.; Copur, H.; Eskikaya, S. In A model to predict the performance of tunneling machines under stressed conditions, Proceedings of the AITES-ITA 2000 World Tunnel Congress, Durban, Published by The South African Institute of Mining and Metallurgy, Johannesburg, Republic of South Africa, May, 2000; pp 13-18.
[4]           Kou, S.; Liu, H.; Lindqvist, P.-A.; Tang, C., Rock fragmentation mechanisms induced by a drill bit. International Journal of Rock Mechanics and Mining Sciences 2004, 41, 527-532.
 
[5]           Liu, H.; Kou, S.; Lindqvist, P.-A.; Tang, C., Numerical simulation of the rock fragmentation process induced by indenters. International Journal of Rock Mechanics and Mining Sciences 2002, 39 (4), 491-505.
[6]           Park, K.; Chang, S.; Choi, S.; Jeon, S. In Prediction of the optimum cutting condition of TBM disc cutter in Korean granite by the linear cutting test, Proceedings, Korean Society for Rock Mechanics Conference, 2006; pp 217-236.
[7]           Gong, Q.-M.; Zhao, J.; Jiao, Y.-Y., Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunnelling and underground space technology 2005, 20 (2), 183-191.
[8]           Bejari, H.; Hamidi, J. K. In Simultaneous effects of joint spacing and orientation on the penetration rate of TBM using numerical modeling, ISRM International Symposium on Rock Mechanics-SINOROCK 2009, International Society for Rock Mechanics: 2009.
[9]           Cho, J.-W.; Jeon, S.; Yu, S.-H.; Chang, S.-H., Optimum spacing of TBM disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method. Tunnelling and Underground Space Technology 2010, 25 (3), 230-244.
[10]         Moon T, Oh J. A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method. Rock mechanics and rock engineering. 2012;45(5):837-49.
[11]         Choi S-O, Lee S-J. Three-dimensional numerical analysis of the rock-cutting behavior of a disc cutter using particle flow code. KSCE Journal of Civil Engineering. 2015;19(4):1129-38.
[12]         Menezes PL, Lovell MR, Avdeev IV, Higgs CF. Studies on the formation of discontinuous rock fragments during cutting operation. International Journal of Rock Mechanics and Mining Sciences. 2014;71:131-42.
[13]         Li X, Li H, Liu Y, Zhou Q, Xia X. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs. Tunnelling and Underground Space Technology. 2016;53:96-108.
[14]         Xiao N, Zhou X-P, Gong Q-M. The modelling of rock breakage process by TBM rolling cutters using 3D FEM-SPH coupled method. Tunnelling and Underground Space Technology. 2017;61:90-103.
[15]         Xia Y, Guo B, Cong G, Zhang X, Zeng G. Numerical simulation of rock fragmentation induced by a single TBM disc cutter close to a side free surface. International Journal of Rock Mechanics and Mining Sciences. 2017;91:40-8.
[16]         Zhu Z, Xie H, Mohanty B. Numerical investigation of blasting-induced damage in cylindrical rocks. International Journal of Rock Mechanics and Mining Sciences. 2008;45(2):111-21.
[17]         Smojver I, Ivančević D. Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach. Composites Science and Technology. 2011;71(4):489-98.
[18]         Systemes D. Abaqus Theory Guide. Abaqus 613 Documentation. 2013.
[19]         Hooputra, H.; Gese, H.; Dell, H.; Werner, H., A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness 2004, 9 (5), 449-464.
[20]         Helwany S. Applied soil mechanics with ABAQUS applications: John Wiley & Sons; 2007.
[21]         Rostami, J., Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure. Colorado School of Mines: 1997.
[22]         Mattar, P. In Permeability of intact and fractured Indiana Limestone, Masters Abstracts International, 2009.
[23]         Schmidt, R. A., Fracture-toughness testing of limestone. Experimental Mechanics 1976, 16 (5), 161-167.
[24]         Nilsen, B.; Ozdemir, L. In Hard rock tunnel boring prediction and field performance, PROCEEDINGS OF THE RAPID EXCAVATION AND TUNNELING CONFERENCE, SOCIETY FOR MINING, METALLOGY & EXPLORATION, INC: 1993; pp 833-833
[25]         Gong Q-M, Zhao J, Jiao Y-Y. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunnelling and underground space technology. 2005;20(2):183-91.
[26]         Shaoquan, K., Some basic problems in rock breakage by blasting and by indentation. Doctoral Thesis Lulea University of Technology, Lulea, Sweden 1995.
[27]         Balci, C.; Tumac, D., Investigation into the effects of different rocks on rock cuttability by a V-type disc cutter. Tunnelling and Underground Space Technology 2012, 30, 183-193.
[28]         Sunal O. Parametric study of a single PDC cutter with a numerical model: West Virginia University; 2009.
[29]         ABAQUS applications: John Wiley & Sons; 2007.
[30]         Rostami, J., Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure. Colorado School of Mines: 1997.
[31]         Mattar, P. In Permeability of intact and fractured Indiana Limestone, Masters Abstracts International, 2009.
[32]         Schmidt, R. A., Fracture-toughness testing of limestone. Experimental Mechanics 1976, 16 (5), 161-167.
[33]         Nilsen, B.; Ozdemir, L. In Hard rock tunnel boring prediction and field performance, PROCEEDINGS OF THE RAPID EXCAVATION AND TUNNELING CONFERENCE, SOCIETY FOR MINING, METALLOGY & EXPLORATION, INC: 1993; pp 833-833
[34]         Gong Q-M, Zhao J, Jiao Y-Y. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunnelling and underground space technology. 2005;20(2):183-91.
[35]         Shaoquan, K., Some basic problems in rock breakage by blasting and by indentation. Doctoral Thesis Lulea University of Technology, Lulea, Sweden 1995.
[36]         Balci, C.; Tumac, D., Investigation into the effects of different rocks on rock cuttability by a V-type disc cutter. Tunnelling and Underground Space Technology 2012, 30, 183-193.
[37]         Sunal O. Parametric study of a single PDC cutter with a numerical model: West Virginia University; 2009.