[1] API Technical Report, (2009), Hydraulic Fracturing Operations-Well Construction and Integrity Guidelines, Washington, DC, American Petroleum Institute.
[2] Montgomeri, C. T., & Smith, M. B. (2010). NSI Technologies, Hydraulic Fracturing: History of an Enduring Technology. Technical Report JPT, JPT.
[3] Haimson, B., & Fairhurst, C. (1969). Hydraulic fracturing in porous-permeable materials. Journal of Petroleum Technology. 21(7), 811-817.
[4] Warpinski, N. R., Clark, J. A., Schmidt, R. A., & Huddle, C. W. (1982). Laboratory investigation on the effect of in-situ stresses on hydraulic fracture containment. Society of Petroleum Engineers Journal. 22(3), 333-340.
[5] Doe, T. W., & Boyce, G. (1989). Orientation of hydraulic fractures in salt under hydrostatic and non-hydrostatic stresses. Int. J. Rock Mech. Min. Sci. 26(6), 605-611.
[6] Beugelsdijk, L. J. L., Pater, C. J., & Sato, K. (2000). Experimental hydraulic fracture propagation in a multi fractured medium. In the SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan.
[7] Lhomme, T. P., Pater, C. J., & Helfferich, P. H. (2002). Experimental study of hydraulic fracture initiation in Colton sandstone. In the SPE/ISRM Rock Mechanics Conference, Texas, USA.
[8] Bohloli, B., & Pater, C. J. (2006). Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress. Journal of Petroleum Science and Engineering, 53 (1-2), 1-12.
[9] Olson, J. E., & Bahorich, B. (2012). Examining hydraulic fracture: Natural fracture interaction in hydrostone block experiments. In the SPE Hydraulic Fracturing Technology Conference, Texas, USA.
[10] Damani, A., Sharma, A., Sondergeld, C. H, & Rai, C. S. (2012). Mapping of hydraulic fractures under triaxial stress conditions in laboratory experiments using acoustic emissions. In the SPE Annual Technical Conference and Exhibition, Texas, USA.
[11] Chitrala, Y., Moreno, C., Sondergeld, C., & Rai, C. (2013). An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions. Journal of Petroleum Science and Engineering. 108, 151-161.
[12] Guo, T., Zhang, S., Qu, Z., Zhou, T., Xiao, Y., & Gao, J. (2014). Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel, 128, 373-380.
[13] Behnia, M., Goshtasbi, K., Fatehi Marji, M., & Golshani, A. (2014). Numerical simulation of crack propagation in layered formations. Arabian Journal of Geosciences, 7(7), 2729-2737.
[14] Fatehi Marji, M. (2014). Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method. International Journal of Solids and Structures, 51, 1716-1736.
[15] Haeri, H., Khaloo, A., & Fatehi Marji, M. (2015). Experimental and numerical analysis of Brazilian discs with multiple parallel cracks. Arabian Journal of Geosciences, 8(8), 5897-5908.
[16] Haeri, H., Khaloo, A., & Fatehi Marji, M. (2015). Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials. Strength of Materials, 47(5), 740- 754.
[17] Moradi, A., Tokhmechi, B., Rasouli, V., & Fatehi Marji, M. (2017). A comprehensive numerical study of hydraulic fracturing process and its affecting parameters. Geotechnical and Geological Engineering, 35(3), 1035-1050.
[18] Moradi, A., Tokhmechi, B., Rasouli, V., & Fatehi Marji, M. (2018). Displacement discontinuity analysis of the effects of various hydraulic fracturing parameters on the crack opening displacement (cod). Journal of Petroleum Science and Technology, 8(3), 3-13.
[19] Behrmann, L. A., & Elbel, J. L. (1991). Effect of perforations on fracture initiation. Journal of Petroleum Technology. 43(5), 608-615.
[20] Ketterij, R. B., & Pater, C. J. (1999). Impact of perforations on hydraulic fracture tortuosity. In the SPE European Formation Damage Conference, Hague, Netherlands.
[21] Alekseenko, O. P., Potapenko, D. I., Cherny, S. G., Esipov, D. V., Kuranakov, D. S., & Lapin V. N. (2012). 3-D modeling of fracture initiation from perforated non-cemented wellbore. In the SPE Hydraulic Fracturing Technology Conference, Texas, USA.
[22] Abdollahipour, A., Fatehi Marji, M., Yarahmadi Bafghi, A., & Gholamnejad, J. (2015). Simulating the propagation of hydraulic fractures from a circular wellbore using the Displacement Discontinuity Method. International Journal of Rock Mechanics & Mining Sciences, 80, 281-291.
[23] Hossain, M. M., Rahman, M. K., & Rahman, S. S. (2000). Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes. Journal of Petroleum Science and Engineering, 27(3-4), 129-149.
[24] Fjar, E., Holt, R. M., Raaen, A. M., Risnes, R., & Horsrud, P. (2008). Petroleum Related Rock Mechanics. 2nd Edition, Elsevier Science publishers B.V, Netherlands.
[25] Irwin, G. R. (1957). Analysis of stresses and strain near the end of crack traversing a plate. J. Appl. Mech., 24, 361-364.
[26] ISRM. (2007). The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Ulusay, R., & Hudson, J. A. (eds.), Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey.