A Domestic Technology of Liner Design for Tumbling Mills

Document Type : Technical Note

Authors

1 Mineral Processing Group, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Dept. of Mining, Shahid Bahonar University of Kerman, Kerman, Iran

10.29252/anm.2020.12207.1399

Abstract

Summary
Liners in tumbling mill transfer energy to the mill load and has a significant impact on the load behavior. In order to achieve a domestic technology of liner design, a knowledge-based package of liner design was developed by using of domestic equipment and software packages. At the first stage, a proposed liner that provides an appropriate load trajectory is obtained by simulation using GMT (grinding media trajectory) software and discrete component method (3D-DEM, KMPCDEM software). In the next stage, the proposed design after validating by a model mill, the manufacturing drawings are prepared. This domestic liner design technology was applied for liners at the Gol-e-Gohar mining and industrial company AG mill and the Sarcheshmeh copper complex ball mill. The results indicated that changing the liners design by using this domestic technology resulted in an overall increase in the mills throughput and more importantly, reduction in the number of liner breakdown. This research has developed a novel and domestic technology that provides a highly reliable and low cost method for designing and changing the tumbling mill liners.
 
Introduction
Since direct observation of charge shape and its motion in industrial mills are not possible, a combination of analytical and physical studies was used to determine charge trajectory and design new liners. Aims of new designs are to improve the effective grinding through changes in liner design.
 
Methodology and Approaches
At the first stage, a proposed liner that provides an appropriate load trajectory is obtained by using a software called GMT (Grinding Media Trajectory) and KMPCDEM software which has been developed based on discrete element method (DEM). In the next stage, after validating by a model mill, the manufacturing drawings of proposed design are prepared. After the construction and installation of the proposed liners, while optimizing the mill operation, the liners wear is recorded using a special measuring device and after preparing a three-dimensional model of liners, a new design is proposed in order to increase its life and reduce the amount of scrap.
 
Results and Conclusions
This domestic liner design technology was applied for AG mill liners at the Gol-e-Gohar mining and industrial company indicated that increasing the liner lifter face angle from 7 to 30° while keeping the original lifter height could provide an appropriate charge trajectory. Installation of proposed liners resulted in an overall increase of 17% in the mill throughput and a reduction of standard deviation. By use of this design package in the Sarcheshmeh copper complex ball and increasing the liner lifter face angle from 0 to 15° and the lifter height from 18 to 21cm, the amount of particles smaller than 75 microns in ball mill 4 product (with proposed design) compared with ball mill 3 (with current design) increased by 2.5% and the liners life of the first half and second half increased by 18% and 20%, respectively.

Keywords

Main Subjects


در کارخانه‌های فرآوری مواد معدنی، آسیاکنی بیشترین سهم مصرف انرژی و هزینه‌های عملیاتی و سرمایه‌ای را دارد و کمتر از 5 درصد از این انرژی صرف خرد کردن مواد می‌شود [1]. از میان تجهیزاتی که جهت خردایش مواد معدنی استفاده می‌شود، آسیاهای گردان بیشترین کاربرد را دارند. آسیاهای گردان تجهیزاتی استوانه‌ای شکل هستند که به صورت افقی در کارخانه‌های فرآوری نصب می‌شوند. مواد معدنی به طور پیوسته از یک طرف وارد آسیا شده و پس از خردایش، از طرف دیگر آسیا، خارج می‌شوند. نحوه حرکت مواد در آسیا، به طور مستقیم بر عملکرد آسیاها (ظرفیت و اندازه محصول خروجی) تاثیرگذار است [2].

سطوح داخلی آسیا با آسترهایی پوشیده می‌شود که عمده وظایف آن مقاومت در برابر ضربات وارده شده از طرف مواد و واسطه، مقاومت در برابر سایش و ایجاد حرکتی مطلوب برای بار است [1، 3]. آسترهای جداره دارای بالابرهایی (Lifter) با اشکال مختلف هستند. در شکل 1 مدل صنعتی آستر‌های جداره و دیواره ورودی و خروجی آسیای نیمه‌خودشکن مجتمع مس سرچشمه نشان داده شده است.

 

شکل 1: مدل صنعتی آستر‌های آسیای نیمه‌خودشکن مجتمع مس سرچشمه

فهم بهتر سازوکار انرژی مصرفی و رفتار بار درون آسیا می‌تواند منجر به صرفه‌جویی چشمگیری در انرژی مصرفی شود [2، 5]. با درک دقیق رفتار بار می‌توان با تغییر عواملی مانند سرعت و طرح آستر، ظرفیت خردایش و کارایی آسیاکنی را افزایش داد و کنترل آسیا را آسان‌تر نمود. در آسیاهای گردان، انرژی وارد شده از موتور به آسیا (به‌ جز بخش‌هایی که به ‌صورت‌های مختلف تلف می‌شود) صرف حرکت بار می‌شود. در این میان، آستر آسیا عامل انتقال انرژی وارد شده به مواد داخل آسیا است و تاثیر قابل توجهی بر رفتار بار داخل آسیا دارد. به همین دلیل، بررسی نقش آستر بر الگوی حرکت بار در داخل آسیا موضوع تحقیقات زیادی بوده است [7-5].

[1]           Wills, B. A., & Finch J. A. (2016). Will's mineral processing technology (Eighth Edition). Elsevier.
[2]           Maleki-Moghaddam, M.; Yahyaei, M.; & Banisi, S. (2013). A method to predict shape and trajectory of charge in industrial mills. Minerals Engineering, 46-47, 157-166.
[3]           Royston, D. (2007). Semi-autogenous grinding (SAG) mill liner design and development. Vol. 24, No. 3.
[4]           Parks, J.L., Kjos, D.N. (1989). Liner Design, Materials and Operating Practices for Lage Primary Mills. International Autogenous and Semiautogenous Grinding Technology, vancouve, pp.565-580.
[5]           Hosseini P., Martins S., Martin T., Radziszewski P., & Boyer F. R. (2011). Acoustic emissions simulation of tumbling mills using charge dynamics. Minerals Engineering, 24, 1440–1447.
[6]           Kalala, T. J., Breetzke, M., & Moys, M. H. (2008). Study of the influence of liner wear on the load behavior of an industrial dry tumbling mill using the Discrete Element Method (DEM). International Journal of Mineral Processing, 86, 33-39.
[7]           Pérez-Alonso, C., Delgadillo, J.A. (2012). Experimental validation of 2D DEM code by digital image analysis in tumbling mills. Minerals Engineering. 25, 20–27.
[8]           Banisi, S., & Hadizadeh, M. (2007). 3-D liner wear profile measurement and analysis in industrial SAG mills. Minerals Engineering. 20, 132-139.
[9]           McIvor, R. E. (1983, Jun.). Effect of speed and liner configuration on ball ill performance. Mining Engineering , 617-622.
[10]         Powell, M. S., Mcbride, A.T. (2006). What is required from DEM simulations to model breakage in mills. Minerals Engineering 19, 1013–1021.
[11]         Rajamani, R. (2006). Semi-Autogenous mill optimization with DEM simulation software. Advances in Comminution, SME Publication, Part 4, p.p. 383-39.
[12]         Powell, M.S. (1991). The Effect of Liner Design on the Motion of the Outer Grinding Elements in a Rotary Mill. International Journal of Mineral Processing. 31: p. 163-193.
[13]         Morrell, S. (1993). The prediction of power draw in wet tumbling mills. Doctorate Thesis, University of Queensland, Australia.
[14]         Powell, M.S., Smit, I., Radziszewski, P., Cleary, P., Rattray, B., Eriksson, K., Schaeffer, L. (2006). The Selection and Design of Mill Liners. In Advances in Comminution, Ed. S.K. Kawatra. ISBN-13: 978-0-87335-246-8, Society for Mining, metallurgy, and exploration, Inc., Colorado, USA. pp. 331-376.
[15]         Yahyaei, M., Banisi, S., (2010). Spreadsheet-based modeling of liner wear impact on charge motion in tumbling mills. Minerals Engineering 23 (I), 1213–1219.
[16]         Powell, M. S.& Nurick, G.N. (1996). A study of charge motion in rotary mills part 3—Analysis of results. Minerals Engineering, Volume 9, Issue 4, Pages 399-418.
[17]         Kiangi, K. & Moys, M.H. (2006). Measurement of load behaviour in a dry pilot mill using an inductive proximity probe, Minerals Engineering, 19 (13), 1348–1356.
[18]         Hosseini P., Martins S., Martin T., Radziszewski P., Boyer F. R. (2011). Acoustic emissions simulation of tumbling mills using charge dynamics, Minerals Engineering, 24, 1440–1447.
[19]         Rajamani, R., Joshi, A.D., and Mishra, B.K., 2002. “Simulation of industrial SAG mill charge motion in 3-D space”, In 2002 SME Annual Meeting, Phoenix. SME Publication, Arizona.
[20]         Bian, X., Wang, G., Wang, H., Wang, S. and Lv W., 2017. “Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation”, Minerals Engineering, 105, pp. 22–35.
[21]         Cleary, P. W. and Owen, P., 2018, “Development of models relating charge shape and power draw to SAG mill operating parameters and their use in devising mill operating strategies to account for liner wear”, Minerals Engineering, 117, pp. 42–62.
[22]         Xu, L., Luo, K. and Zhao Y., 2018. “Numerical prediction of wear in SAG mills based on DEM simulations”, Powder Technology, https://doi.org /10.1016/ j.powtec. 2018.02.004
[23]         N. Djordjevic, R.  Morrison, and B. Loveday, 2006. “Modelling comminution patterns within a pilot scale AG/SAG mill”, Minerals Engineering, 19 (1), pp. 1505-1516.
[24]         N. Djordjevic, F. N. Shi and R. Morrison, 2004. “Determination of lifter design, speed and filling effects in AG mills by 3D DEM”, Minerals Engineering, 17 (1), pp. 1135-1142.
[25]         Scharpf, D., 2008. "DEM Applications: Simulation of Particulate Solids Handling and Processing Operations Using the Discrete Element Method", Vision of Engineering Analysis and Simulation: NAFEMS Company, Developer of EDEM Software, 9-30.
[26]         Mohamadi, S., 2003. Discontinuum Mechanics Using Finite and Discrete Elements, WIT Press / Computational Mechanics.
[27]         Ghasemi, A., Mousavi, O., and Banisi, S., 2014."Effect  of  Time  Step on  the  Accuracy  of DEM  Calculation",  In XXVII IMPC, Santiago, Chile.