Optimization of Sardasht Dam Sealing System Using UDEC Software

Document Type : Research Article

Authors

1 Dept. of Mining,Faculty of Engineering, University of Gonabad, Khorasan Razavi

2 M.Sc. of Mining Engineering. University of Gonabad, Khorasan Razavi

3 Associated prof., School of Mining, College of Engineering, University of Tehran,

Abstract

Summary
In this paper, the capability of foundation and support for the Sardasht dam is investigated. Finally, according to the results of numerical modeling in UDEC software, the diameter and distance of grout injection boreholes and dimensions and angle of seal curtain of the dam foundation dam have been suggested.
 
Introduction
The injection is a process whereby a cement slurry is pushed into rock formations through a borehole, thereby reducing the permeability and deformation of the rock mass and increasing its resistance. The rocks are almost impermeable and rock mass permeability is often a function of discontinuity systems. Due to the different and unpredictable behavior of rock masses, there is no specific law for determining the distance of injection holes and generally relies on the experience and judgment of the design engineer when deciding on the borehole distance. So, it is proposed to use numerical methods in predicting the radii of injection for grouting material and also determining the ideal spacing between adjacent holes. As the main results of this study, the optimum pattern for drilling sealing systems for different locations of the Sardasht dam was determined and compared to the empirical models using the discrete element method in UDEC. The optimum deviation angle of the holes was investigated, too.
 
Methodology and Approaches
The Sardasht dam is a trench with a clay core with a height of about 106 meters and a length of 280 meters. The total embankment volume of the dam body is estimated to be about 3 million cubic meters and the volume of clay core is about 516000 cubic meters. The water diversion system consists of two tunnel strings with an inner diameter of 7m and lengths of 627m and 682m in the right support and its height is about 46m. The right tunnel is used as the lower evacuator during the operation period. In order to investigate the in-situ condition of rock mass in Sardasht Dam area, rock mechanical parameters including rock mass quality index (RQD), specific gravity, uniaxial compressive strength, and geometry and resistive properties of discontinuities have been determined and measured. Then, the quality of grout injection in walls and foundation of the Sardasht dam was modeled, using numerical modeling in UDEC discrete element software.
 
Results and Conclusions
The results of this study show that the appropriate borehole spacing for the walls and the foundation should be taken as 3m and 5m, respectively. Also, the results obtained from the numerical modeling of the optimum injection pressure in the construction area of the Sardasht dam were determined for different depths. Based on the numerical modeling results in order to minimize water leakage from the Sardasht dam foundation, the optimum angle of curtain installation should be 17 degrees.

Keywords

Main Subjects


1- مقدمه

تزریق فرآیندی است که به واسطه آن دوغاب سیمانی از طریق یک گمانه با فشار به داخل تشکیلات سنگی (خاکی) نفوذ کرده و در اثر آن نفوذپذیری و تغییر شکل‌پذیری توده سنگ کاهش یافته و مقاومت آن افزایش پیدا می‌کند. نفوذپذیری سنگ بکر در مقایسه با ناپیوستگی‏های موجود بسیار کم بوده و نفوذپذیری توده سنگ غالباً تابع سیستم‌های ناپیوستگی است. در مهندسی سنگ و زمین شناسی، از رفتار رئولوژیکی بینگهام در مدل‌سازی جریان دوغاب‌های سیمانی استفاده می‌شود[1]. تفاوت اصلی این مدل با یک سیال نیوتنی این است که در یک سیال بینگهام، سطح تنش باید از مقاومت برشی اولیه تجاوز کند تا جریان سیال آغاز شود. الگوی طراحی شبکه گمانه‌های تزریق بسته به هدف تزریق متفاوت است، اما معیار فاصله‌داری نهایی گمانه‌ها مستقل از آن است و به نفوذپذیری اولیه تشکیلات زمین شناسی، سیستم ناپیوستگی‏ها، ترکیب ماده تزریق، فشار تزریق و معیار اشباع‌شدگی بستگی دارد [2]. نظر به رفتار متفاوت و غیرقابل پیش‌بینی توده‌های سنگی، قانون ثابت و مشخصی برای تعیین فاصله چال‌های تزریق وجود ندارد و عموماً هنگام تصمیم‌گیری در مورد فاصله گمانه‌ها، به تجربه و قضاوت مهندسی طراح تکیه می‌شود. نتایج بررسی‌های لیو و سان نشان داد که مهم‌ترین عوامل پیچیدگی تزریق دوغاب در توده سنگ به عنوان یک فرآیند هیدرولیکی - مکانیکی ناشی از سه عامل اصلی تغییر شکل مکانیکی توده‏ سنگ در طول فرآیند تزریق، نفوذ دوغاب درون درز و شکاف‏ها و توسعه شکستگی‌های ناشی از تنش تزریق، است. مسیر نفوذ دوغاب در توده‌سنگ محدود به ناپیوستگی‏های ذاتی نبوده بلکه ترکیب این ناپیوستگی‏ها با شکستگی‌های هیدرولیکی در طول فرآیند تزریق، شبکه ناپیوستگی‏ها[i] را تشکیل می‏دهند [3-5]. روش‌های تجربی تعیین عمق نفوذ دوغاب، محدود به شرایط آزمایش بوده و راهکارهای تئوری بیشتر براساس تئوری محیط پیوسته هستند اما روش‌های عددی می‌توانند ابزاری مناسب برای مدل کردن جریان واقعی سیال در توده‏سنگ‏هایی با شکستگی‌های پبچیده باشند. بر این اساس همواره استفاده از روش‌های تحلیل عددی در پیش‌بینی نتایج تزریق در توده‏ سنگ مورد توجه محققین مختلف قرار گرفته‌است.



[i] Fracture Network

[1]                 X. Wang and H. Zhou, 2001و "An improved hyperbola rheological model for fresh cement-clay grouts," Tunnelling and Underground Space Technology, vol. 16, no. 4.
[2]                 E. Nonveiller, 2013, "Grouting theory and practice." Elsevie.
[3]                 G. Lombardi, 2003, "Grouting of rock masses," in Grouting and ground treatment, pp. 164-197.
[4]                 T. Carter, W. Dershowitz, D. Shuttle, and M. Jefferies, 2012, "Improved Methods of Design for Grouting Fractured Rock," presented at the International Conference on Grouting and Deep Mixing.
[5]                 W. Sui, J. Liu, W. Hu, J. Qi, and K. Zhan, 2015و "Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water," Tunnelling and Underground Space Technology, vol. 50, pp. 239-249.
[6]                 L. Hassler, 1993, "Grouting of rock: Simulation and classification,".
[7]                 M. Eriksson, H. Stille, and J. Anderson, 2000, "Numerical calculations for prediction of grout spread with account for filtration and varying aperture," Tunnelling and underground space technology, vol. 15, no. 4, pp. 353-364.
[8]                 M. Yang, Z. Yue, P. K. Lee, B. Su, and L. Tham, 2002, "Prediction of grout penetration in fractured rocks by numerical simulation," Canadian Geotechnical Journal, vol. 39, no. 6, pp. 1384-1394.
[9]                 C. Fidelibus and V. Lenti, 2012, "The propagation of grout in pipe networks," Computers & Geosciences, vol. 45, pp. 331–336.
[10]              C. Fidelibus and V. Lenti, 2012, "Short note: The propagation of grout in pipe networks," Computers and Geotechnics, vol. 45, pp. 331-336.
[11]              T. Chen, L. Zhang, and D. Zhang, 2014, "An FEM/VOF hybrid formulation for fracture grouting modelling," Computers & Geosciences, vol. 58, pp. 14-27.
[12]              H. Rahmani, 2009, "Estimation of grout distribution in a fractured rock by numerical modeling," University of British Columbia.
[13]              J. Lee, C. Bang, Y. Mok, and S. Joh, 2000, "Numerical and experimental analysis of penetration grouting in jointed rock masses," International Journal of Rock Mechanics & Mining Sciences, vol. 37, no. 7, pp. 1027-1037.
[14]              A. Draganović and H. Stille, 2011, "Filtration and penetrability of cement-based grout: Study performed with a short slot," Tunnelling and underground space technology, vol. 26, no. 4, pp. 548-559.
[15]              Q. Liu and L. Sun, 2019, "Simulation of coupled hydro-mechanical interactions during grouting process in fractured media based on the combined finite-discrete element method," Tunnelling and Underground Space Technology, vol. 84, pp. 472-486.
[16]              A. Paluszny and R. Zimmerman, 2011, "Numerical simulation of multiple 3D fracture propagation using arbitrary meshes," Computer Methods in Applied Mechanics Engineering, vol. 200, no. 9-12, pp. 953-966.
[17]              A. Paluszny, X. Tang, M. Nejati, and R. Zimmerman, 2016, "A direct fragmentation method with Weibull function distribution of sizes based on finite-and discrete element simulations," International journal of solids structures, vol. 80, pp. 38-51.
[18]              O. Omidi, R. Abedi, and S. Enayatpour, 2015, "An adaptive meshing approach to capture hydraulic fracturing," in 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
[19]              Q. Liu, L. Sun, X. Tang, and L. Chen, 2018, "Simulate intersecting 3D hydraulic cracks using a hybrid “FE Meshfree” method," Engineering Analysis with Boundary Elements, vol. 91, pp. 24-43.
[20]              N. Moës, J. Dolbow, and T. Belytschko, 1999, "A finite element method for crack growth without remeshing," International journal for numerical methods in engineering, vol. 46, no. 1, pp. 131-150.
[21]              T. Belytschko and T. Black, 1999, "Elastic crack growth in finite elements with minimal remeshing," International journal for numerical methods in engineering, vol. 45, no. 5, pp. 601-620.
[22]              C. Duarte, O. Hamzeh, T. Liszka, and W. Tworzydlo, 1999, "The element partition method for three-dimensional dynamic crack propagation,"in Fifth US National Congress on Computational Mechanics,", vol. 297.
[23]              J. Pereira, C. Duarte, X. Jiao, and D. Guoy, 2009, "Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems," Computational Mechanics, vol. 44, no. 1, pp. 73-92.
[24]              P. Gupta and C. A. Duarte, 2014, "Simulation of non‐planar three‐dimensional hydraulic fracture propagation," International Journal for Numerical Analytical Methods in Geomechanics, vol. 38, no. 13, pp. 1397-1430.
[25]              B. Lecampion, 2009, "An extended finite element method for hydraulic fracture problems," Communications in Numerical Methods in Engineering, vol. 25, no. 2, pp. 121-133.
[26]              T. A. Cruse, 1969, "Numerical solutions in three dimensional elastostatics," International journal of solids structures, vol. 5, no. 12, pp. 1259-1274.
[27]              M. Hossain and M. Rahman, 2008, "Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing," Journal of Petroleum Science and Engineering, vol. 60, no. 2, pp. 86-104.
[28]              M. Lak, M. F. Marji, A. Y. Bafghi, and A. Abdollahipour, 2019, "A coupled finite difference-boundary element method for modeling the propagation of explosion-induced radial cracks around a wellbore," Journal of Natural Gas Science Engineering, vol. 64, pp. 41-51.
[29]              A. Abdollahipour, M. F. Marji, A. Y. Bafghi, and J. Gholamnejad, 2016, "A complete formulation of an indirect boundary element method for poroelastic rocks," Computers and Geotechnics, vol. 74, pp. 15-25.
[30]              Z. Wilson and C. Landis, 2016, "Phase-field modeling of hydraulic fracture," Journal of the Mechanics Physics of Solids, vol. 96, pp. 264-290.
[31]              A. Abdollahipour, M. F. Marji, A. Y. Bafghi, and J. Gholamnejad, 2016, "On the accuracy of higher order displacement discontinuity method (HODDM) in the solution of linear elastic fracture mechanics problems," Journal of Central South University, vol. 23, no. 11, pp. 2941-2950, 2016/11/01 .
[32]              A. Abdollahipour, M. F. Marji, A. Y. Bafghi, and J. Gholamnejad, 2015, "Simulating the propagation of hydraulic fractures from a circular wellbore using the Displacement Discontinuity Method," International Journal of Rock Mechanics and Mining Sciences, vol. 80, pp. 281-291.
[33]              D. O. Potyondy and P. Cundall, 2004, "A bonded-particle model for rock," International Journal of Rock Mechanics & Mining Sciences, vol. 41, no. 8, pp. 1329-1364.
[34]              B. Park and K. Min, 2015, "Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock," International Journal of Rock Mechanics & Mining Sciences, vol. 76, pp. 243-255.
[35]              M. Sousani, D. Ingham, M. Pourkashanian, Y. Sheng, and I. Eshiet Kenneth, 2015, "Simulation of the hydraulic fracturing process of fractured rocks by the discrete element method," Environmental earth sciences, vol. 73, no. 12, pp. 8451-8469.
[36]              A. A. Munjiza, 2004, "The combined finite-discrete element method," John Wiley & Sons.
[37]              Q. Lei, J. Latham, J. Xiang, and P. Lang, 2014, "Coupled FEMDEM-DFN model for characterizing the stress-dependent permeability of an anisotropic fracture system," in International Conference on Discrete Fracture Network Engineering.
[38]              Y. Chengzeng, Z. Hong, S. Guanhua, and G. Xiurun, 2016, "Combined finite-discrete element method for simulation of hydraulic fracturing," Rock mechanics and rock engineering, vol. 49, no. 4, pp. 1389-1410.
[39]              Q. Liu, D. Jiang, T. Hayat, and A. Alsaedi, 2018, "Influence of stochastic perturbation on an SIRI epidemic model with relapse," Applicable Analysis, pp. 1-20.
[40]              J.-P. Latham, J. Xiang, M. Belayneh, H. M. Nick, C.-F. Tsang, and M. J. Blunt, 2013, "Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures," International Journal of Rock Mechanics and Mining Sciences, vol. 57, pp. 100-112.
[41]              S.-F. C. Partnership, 2011, "Sardasht Dam and Power Plant Design," in Engineering Geology Report Second stage studies," Partnership Moshanir - Karkhe Payab Co.
[42]              UDEC, Itasca C. G; UDEC 4 Manual. Minneapolis, 2004.
[43]              N. Wiler, 1996, "Injection Engineering Operations." Zayand Ab Consulting Engineers.
[44]              M. A. Karbalaei and H. Katibeh, 2009, "Cement grouting in Rocks." Tarava, (In Persian)