Effect of the Replacement of Cutting Tools on the Performance of TBM in Tehran Metro Line 6

Document Type : Research Article

Authors

1 Dept. of Mining, Tarbiat Modares University, Tehran, Iran

2 Ahab construction company, Tehran

10.29252/anm.2020.13703.1438

Abstract

Summary
In this paper, the effect of replacing disc cutters with ripper tools on the performance of a TBM in Tehran Metro Line 6 is investigated by comparing the value of operating parameters of TBM before and after the replacement. The results show that this replacement has a positive impact on the TBM performance.
 
 
 
Introduction
Improvement of the performance of the TBM machine in tunneling has always been in the spotlight of research and development. The type of cutting tool, which is selected based on the mechanical properties of the formations along the tunnel route, could affect the efficiency and production rate in tunneling. In Tehran Metro Line 6, the consumption of disc cutters increased with decreasing the efficiency of disc cutters, along with increasing the value of thrust and torque. Hence, some of the disc cutters of the TBM were replaced with ripper tools in order to improve the TBM performance.  
 
Methodology and Approaches
In this paper, the effect of this replacement on the performance of the TBM is examined by statistical analysis of the field measurements. The value of operational parameters- thrust, torque, and penetration rate of the TBM- in different sections before and after the replacement is investigated.
 
Results and Conclusions
The statistical analysis shows that the mean value of both thrust and torque as well as their standard deviations after the replacement have considerably decreased in comparison with the figures for before the replacement, while the mean value of penetration rate has been approximately identical in both before and after the replacement of cutting tools. The results show that this replacement of disc cutters with ripper tools in alluvial conditions of Tehran has improved the performance of the TBM machine.

Keywords

Main Subjects


عملیات حفاری توسط هر ماشین حفاری همواره اندرکنشی بین زمین و ماشین است و از این رو پارامترهای مهم در عملکرد و پیشروی TBM به طور کلی به دو دسته شرایط زمین و مشخصات ماشین حفر تقسیم می­شوند. شرایط زمین، شامل پارامترهای وابسته به مشخصات سنگ بکر و شرایط توده‌سنگ می‌باشد. ابزار برش TBM که روی کله ‌حفار آن نصب می­گردد به عنوان مهم‌ترین قسمت دستگاه که در تماس با توده سنگ سینه کار است در شرایط مختلف زمین‌شناسی رفتارهای متفاوتی از خود نشان می‌دهد که آشنایی با آن و مکانیزم حفر آن از اهمیت زیادی برخوردار است. ابزار برش برای انتقال انرژی تولید ‌شده توسط ماشین به سنگ استفاده می‌شود. به عنوان یک نتیجه، مشخصات هندسی و سایش دیسک (ابزار برش) اثر مهمی بر بازدهی انتقال انرژی به سنگ و رسیدن به نرخ نفوذ دست یافتنی دارد. ابزار­های خراشی یا ریپرها در ماشین­های اولیه حفاری سنگ به عنوان ابزار برش مورد استفاده قرار می­گرفتند. از آنجا که آنها شکل هندسی ساده­تری داشته، درک بهتری از مکانیزم برش سنگ فراهم شده و منجر به توسعه تئوری‌های برش سنگ شده­اند [1, 2]. در شکل 1 نمایی از چند نوع از این ابزار­ها نشان داده شده‌است.

[1]           Evans, I. (1958).Theoretical aspects of coal ploughing.[In:] WH Watton, Editor, Mechanical Properties of Non-Metallic Brittle Materials. Butterworths, London.
[2]           Potts, E., Shuttleworth, P. (1958). A study of ploughability of coal with special reference to the effects of blade shape, direction of planning to the cleat, planning speed and influence of water infusion. Trans Inst Min Eng. 117, 519-53.
[3]           Yasar, S., Yilmaz, A.O. (2017). Rock cutting tests with a simple-shaped chisel pick to provide some useful data. Rock Mechanics and Rock Engineering. 50, 3261-9.
[4]           Cho, J.-W., Jeon, S., Yu, S.-H., Chang, S.-H. (2010). Optimum spacing of TBM disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method. Tunnelling and Underground Space Technology. 25, 230-44.
[5]           Evans, I. (1982). Optimum line spacing for cutting picks. Mining Engineer. 141, 433-4.
[6]           Evans, I. (1984). A theory of the cutting force for point-attack picks. International Journal of Mining Engineering. 2, 63-71.
[7]           Pomeroy, C. (1963). The breakage of coal by wedge action. Colliery Guardian. 207, 672-7.
[8]           Dalziel, J., Davies, E. (1964). Initiation of cracks in coal specimens by blunted wedges. The Engineer. 217, 217-20.
[9]           Hughes, H. (1972).Some aspects of rock machining. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, Vol. 9, pp. 205-11.
[10]         Nishimatsu, Y. (1972).The mechanics of rock cutting. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, Vol. 9, pp. 261-70.
[11]         Wang, F., Ozdemir, L. (1978). Tunnel-boring penetration rate and machine design. Transportation Research Record.
[12]         Fowell, R., Johnson, S. (1991).Cuttability assessment applied to drag tool tunnelling machines. In: 7th ISRM Congress, International Society for Rock Mechanics and Rock Engineering.
[13]         Roxborough, F., Liu, Z. (1995).Theoretical considerations on pick shape in rock and coal cutting. In: Proceedings of the sixth underground operator’s conference, Kalgoorlie, pp. 189-93.
[14]         Lislerud, A. (1988). Hard rock tunnel boring: prognosis and costs. Tunnelling and Underground Space Technology. 3, 9-17.
[15]         Bruland, A. (1998). Prediction model for performance and costs. Norwegian TBM Tunnelling, Publication. 11.
[16]         Rostami, J. (1993).a new model for performance prediction of hard rock tbms. In: proceedings/1993 rapid excavation and tunneling conference.
[17]         Bilgin, N., Feridunoglu, C., Tumac, D., Cinar, M., Özyol, L. (2006). TBM cutting performance in Istanbul. T & T international. 17-9.
[18]         Barton, N., Gammelsaeter, B. (2010). Predicting TBM advance using the Q-system and QTBM. Tunnelling Journal (October/November). 32-6.
[19]         Gong, Q., Zhao, J., Jiang, Y. (2007). In situ TBM penetration tests and rock mass boreability analysis in hard rock tunnels. Tunnelling and underground space technology. 22, 303-16.
[20]         Shahriar, K., Sharifzadeh, M., Hamidi, J.K. (2008). Geotechnical risk assessment based approach for rock TBM selection in difficult ground conditions. Tunnelling and Underground Space Technology. 23, 318-25.
[21]         Yagiz, S., Karahan, H. (2011). Prediction of hard rock TBM penetration rate using particle swarm optimization. International Journal of Rock Mechanics and Mining Sciences. 48, 427-33.
[22]         Eftekhari, M., Baghbanan, A., Bagherpour, R. (2014). The effect of fracture patterns on penetration rate of TBM in fractured rock mass using probabilistic numerical approach. Arabian Journal of Geosciences. 7, 5321-31.
[23]         Bilgin, N. (1977). Investigations into the mechanical cutting characteristics of some medium and high strength rocks Newcastle University.
[24]         Roxborough, F., Rispin, A. (1973). Mechanical cutting characteristics of lower chalk. Tunnels & Tunnelling International. 5.
[25]         Evans, I. (1972). Relative efficiency of picks and discs for cutting rock. MRDE Report No. 41, National Coal Board, UK, p. 6.
[26]         Bilgin, N., Balci, C., Tuncdemir, H., Eskikaya, S., Akgul, M., Algan, M. (1999). The performance prediction of a TBM in difficult ground condition. AFTES, Journees d’Etudes Internationales de Paris. 25-8.
[27]         Bilgin, N., Copur, H., Balci, C., Tumac, D., Akgul, M., Yuksel, A. (2008).The selection of a TBM using full scale laboratory tests and comparison of measured and predicted performance values in Istanbul Kozyatagi-Kadikoy metro tunnels. In: World Tunnel Congress, Akra, India, pp. 1509-17.
[28]         Goh, A.T.C., Zhang, W., Zhang, Y., Xiao, Y., Xiang, Y. (2018). Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bulletin of Engineering Geology and the Environment. 77, 489-500.
[29]         Yagiz, S. (2008). Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunnelling and Underground Space Technology. 23, 326-39.
[30]         Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., Tavakoli, H. (2010). TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel. Rock Mechanics and Rock Engineering. 43, 427-45.
[31]         Jain, P., Naithani, A., Singh, T. (2014). Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps–A case study. Journal of Rock Mechanics and Geotechnical Engineering. 6, 36-47.
[32]         Ozdemir, L. (1977). Development of theoretical equations for predicting tunnel boreability Colorado School of Mines. Arthur Lakes Library.
[33]         Yagiz, S. (2003). Development of rock fracture and brittleness indices to quantify the effects of rock mass features and toughness in the CSM model basic penetration for hard rock tunneling machines
[34]         Gong, Q.-M., Zhao, J., Hefny, A. (2006). Numerical simulation of rock fragmentation process induced by two TBM cutters and cutter spacing optimization. Tunnelling and Underground Space Technology. 21.
[35]         Gong, Q., Jiao, Y., Zhao, J. (2006). Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters. Tunnelling and Underground Space Technology. 21, 46-55.
[36]         Afrasiabi, N., Rafiee, R., Noroozi, M. (2019). Investigating the effect of discontinuity geometrical parameters on the TBM performance in hard rock. Tunnelling and Underground Space Technology. 84, 326-33.
[37]         Eftekhari, M., Baghbanan, A., Bayati, M. (2010).Predicting penetration rate of a tunnel boring machine using artificial neural network. In: ISRM International Symposium-6th Asian Rock Mechanics Symposium, International Society for Rock Mechanics and Rock Engineering.
[38]         Ge, Y., Wang, J., Li, K. (2013). Prediction of hard rock TBM penetration rate using least square support vector machine. IFAC Proceedings Volumes. 46, 347-52.
[39]         Gao, L., Li, X.-b. (2015). Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions. Journal of Central South University. 22, 290-5.
[40]         Gao, X., Shi, M., Song, X., Zhang, C., Zhang, H. (2019). Recurrent neural networks for real-time prediction of TBM operating parameters. Automation in Construction. 98, 225-35.
[41]         Li, J., Li, P., Guo, D., Li, X., Chen, Z. (2020). Advanced prediction of tunnel boring machine performance based on big data. Geoscience Frontiers.
[42]         Zhang, Z., Meng, L., Sun, F. (2014). Wear analysis of disc cutters of full face rock tunnel boring machine. Chinese Journal of Mechanical Engineering. 27, 1294-300.
[43]         Wang, L., Kang, Y., Zhao, X., Zhang, Q. (2015). Disc cutter wear prediction for a hard rock TBM cutterhead based on energy analysis. Tunnelling and Underground Space Technology. 50, 324-33.
[44]         Xia, Y., Guo, B., Cong, G., Zhang, X., Zeng, G. (2017). Numerical simulation of rock fragmentation induced by a single TBM disc cutter close to a side free surface. International Journal of Rock Mechanics and Mining Sciences. 91, 40-8.
[45] Pan, Y., Liu, Q., Liu, J., Liu, Q., Kong, X. (2018). Full-scale linear cutting tests in Chongqing Sandstone to study the influence of confining stress on rock cutting efficiency by TBM disc cutter. Tunnelling and Underground Space Technology. 80, 197-210.
[46] Yang, Y., Hong, K., Sun, Z., Chen, K., Li, F., Zhou, J., et al. (2018). The derivation and validation of TBM disc cutter wear prediction model. Geotechnical and Geological Engineering. 36, 3391-8.
[47] Hassanpour, J., Rostami, J., Azali, S.T., Zhao, J. (2014). Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case history of Karaj water conveyance tunnel, Iran. Tunnelling and underground space technology. 43, 222-31.
[48]         Barzegari, G., Uromeihy, A., Zhao, J. (2015). Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects. Tunnelling and Underground Space Technology. 48, 43-57.
[49]         Tang, S.-H., Zhang, X.-P., Liu, Q.-S., Chen, P., Sun, X.-T., Sun, L., et al. (2020). Prediction and analysis of replaceable scraper wear of slurry shield TBM in dense sandy ground: A case study of Sutong GIL Yangtze River Crossing Cable Tunnel. Tunnelling and Underground Space Technology. 95, 103090.
[50]         Bilgin, N., Copur, H., Balci, C. (2012). Effect of replacing disc cutters with chisel tools on performance of a TBM in difficult ground conditions. Tunnelling and Underground Space Technology. 27, 41-51.
[51]         Darya Khak Pey Consulting Engineers. (2011).Geotechnical Report of Line 6 of Tehran Metro Tunnel (In Persian).