Simulation of Water Jet Cutting for Granite by Using Smoothed Particle Hydrodynamics

Document Type : Research Article

Authors

Dept. of Mechanical Engineering, Yazd University, Yazd, Iran

10.29252/anm.2020.11204.1372

Abstract

Summary
In this paper, the rock cutting with a water jet is simulated using a Smoothed Particle Hydrodynamics method. The proposed model shows that the Smoothed Particle Hydrodynamics method is a suitable method for analysis of rock cutting with water jets.
 
Introduction
One of the most advanced methods of cutting materials is water jet cutting. Due to its advantages over other cutting methods, it has been widely used in recent years. Cutting with a water jet is a subset of fluid and structure interaction issues in which water flows into the boundaries of the rock, and this changes the shape of the rock in the impact area. In order to examine this issue accurately, the boundary conditions of water and rock must be coupled in order to obtain the correct behavior of the collision area, which is the most important and complex part of simulation by theoretical, experimental, and numerical methods.
 
Methodology and Approaches
In this paper, the rock cutting with a water jet is simulated using a smoothed particle hydrodynamics method, which is a Lagrangian numerical and meshfree method. For this purpose, firstly, the governing equations for fluid and solid are discretized with the help of the predictive-correct algorithm. Then, using the algorithm based on these equations, a two-dimensional collision of water jet and rock and breaking behavior of rock are simulated.
 
Results and Conclusions
With this method, the depth and width of the cut can be determined at different speeds of the water jet and the optimal cutting speed of the stone is obtained. The results of the simulation have acceptable accuracy compared to the experimental results and show that the smoothed particle hydrodynamics method is a suitable method for the analysis of rock cutting with water jets.

Keywords

Main Subjects


اندرکنش سیال و سازه، اثر متقابل سازه متحرک یا تغییر شکل‌پذیر با جریان سیال است. این موضوع یکی از مباحث جذاب و کاربردی در علوم مهندسی است. به دلیل پیچیدگی حل مسئله به صورت تئوری، رویکرد محققان در برابر این پدیده، روش‌های تجربی، آزمایشگاهی و عددی است. در بیشتر این گونه مسائل، نیرو‌ها توسط جریان سیال به مرز­‌های جامد اعمال شده و هندسه مرز‌­ها را تغییر می‌دهد. در این حالت سیال با حرکت خود، به مرز‌‌های جامد نیرو وارد می‌کند، بنابراین برای تحلیل دقیق، شرایط مرزی دینامیکی دو محیط باید با هم کوپل شوند. یکی از پیشرفته‌ترین روش‌های برش مواد، روش برش با جت آب است که از سال 1970 میلادی وارد عرصه صنعت شد[1] و به علت مزایای متفاوت نسبت به سایر فناوری‌های برش (ماشین‌های تراش معمولی، برش پلاسما و لیزر) از جمله عدم ایجاد تنش‌های حرارتی در ماده هدف، انعطاف‌پذیری، نیرو‌‌های برش کوچک، سروصدای بسیار کم، ظرفیت تولید بالا و ضایعات کم در سال‌های اخیر پیشرفت شگرفی داشته است.

[1]           Khosrotash, M., Khosrotash, M. (1999). Familiarity with Jet. First Student Conference on Mining Engineering, Tehran, Faculty of Engineering, University of Tehran (In Persian)
[2]           Farmer,I.W. Attewell,P.B. (1965). "Rock penetration by high velocity water jet: A review of the general problem and an experimental study", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 2, pp. 135-153.
[3]           Springer,G.S. (1976). Erosion by liquid impact: John Wiley and Sons,New York, NY; None
[4]           Field, J. E. (1999)."ELSI conference: invited lecture: Liquid impact: theory, experiment, applications", Wear, vol. 233-235, pp. 1-12.
[5]           Wenjun, Wang Jianming Gao Na Gong. (2010). "Abrasive waterjet machining simulation by coupling smoothed particle hydrodynamics/finite element method", Chinese Journal of Mechanical Engineering 23, no. 5,vol.23, pp.1-6.
[6]           Hongxiang,J.,Changlong,D., Songyong,L., and  Kuidong,G. (2014). "Numerical Simulation of Rock Fragmentation under the Impact Load of Water Jet", Shock and Vibration ,vol. 2014, pp.11.
[7]           Lu,Y., Huang,F., Liu,X., and Ao,X. (2015). "On the failure pattern of sandstone impacted by high-velocity water jet", International Journal of Impact Engineering, vol. 76, pp. 67-74.
[8]           X. Liu, S. Liu, and H. Ji,. (2015). "Numerical research on rock breaking performance of water jet based on SPH", Powder Technology, vol. 286, pp. 181-192.
[9]           Wang,F., Wang,R., Zhou,W., and Chen,G. (2017). "Numerical simulation and experimental verification of the rock damage field under particle water jet impacting", International Journal of Impact Engineering, vol. 102, pp. 169-179.
[10]         Momber,A.W. (2016). "The response of geo-materials to high-speed liquid drop impact", International Journal of Impact Engineering, vol. 89, pp. 83-101.
[11]         Liu, Rong,G., and Liu, M.B. (2003). Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore.
[12]         Antoci,C., Gallati,M., and Sibilla,S. (2007). "Numerical simulation of fluid–structure interaction by SPH", Computers & Structures, vol. 85, pp. 879-890.
[13]         Rafiee,A. and Thiagarajan, K. P. (2009). "An SPH projection method for simulating fluid-hypoelastic structure interaction", Computer Methods in Applied Mechanics and Engineering, vol. 198, pp. 2785-2795.
[14]         Amini,Y., Emdad, H. and Farid, M.(2011). "A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method", European Journal of Mechanics - B/Fluids, vol. 30, pp. 184-194.
[15]         Akinci,N., Ihmsen,M., Akinci, G., Solenthaler, B. and Teschner,M. (2012). "Versatile rigid-fluid coupling for incompressible SPH", ACM Trans. Graph., vol. 31, pp. 1-8.
[16]         Pramanik,R., and Deb,D. (2015). "Implementation of Smoothed Particle Hydrodynamics for Detonation of Explosive with Application to Rock Fragmentation", Rock Mechanics and Rock Engineering, vol. 48, pp. 1683-1698.
[17]         Shao, S. (2005)."SPH simulation of solitary wave interaction with a curtain-type breakwater", Journal of Hydraulic Research, vol. 43, pp. 366-375.
[18]         Liu, M. B., and Liu, G. R. (2010). "Smoothed Particle Hydrodynamics (Sph): An Overview And recent Developments", Archives of Computational Methods in Engineering 17, no. 1 ,pp. 25-76.
[19]         Crespo, A. J. C., Gesteira, M.G., and Dalrymple, R. A. (2007). Boundary conditionsgenerated by dynamic particles in SPH methods. Computers, Materials, & Continua, 5(3):173–184.
[20]         Ghadimi, P., Farsi, M., and Dashtimanesh,A. (2012). "Study of various numerical aspects of 3D-SPH for simulation of the dam break problem", Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 34, pp. 486-491.
[21]         Dong, X. W., Liu, G. R., Li, Z., and Zeng,W .(2016)."A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles", Tribology International, vol. 95, pp. 267-278.