[1] X.P. Zhou, Y. Wang, X. Xu, Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics, Int. J. Fracture 201 (2) (2016) 213–234.
[2] S.Y. Wang, S.W. Sloan, D.C. Sheng, S.Q. Yang, C.A. Tang, Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression, Int. J. Solids Struct. 51 (5) (2014) 1132–1148.
[3] T. Kato, T.Nishioka, Analysis of micro-macro material properties and mechanical effects of damaged material containing periodically distributed elliptical microcracks. Int. J. Fract. 131, 247–266 (2005).
[4] J.A. Hudson, E.T. Brown, F. Rummel, Controlled failure of rock diss and rings loaded in diametral compression. Int. J. Rock Mech. Min. Sci. 9, 241–248 (1972)
[5] J.A. Hudson, Tensil strength and the Ring test. Int. J. Rock Mech. Min. Sci. 6, 91–97 (1969)
[6] Y.P. Li, L.Z. Chen, Y.H. Wang, Experimental research on pre-cracked marble under compression, Int. J. Solids Struct. 42 (9–10) (2005) 2505 2516.
[7] S. Yang, Y. Huang, W. Tian, J. Zhu. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Engineering Geology (2016), doi:10.1016/j.enggeo.2016.12.004
[8] H. Haeri, A. Khaloo, M. Marji, Fracture analyses of different pre-holed concrete specimens under Compression. The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, 2015.
[9] Hoek E, Martin CD. Fracture initiation and propagation in intact rock – A review. J Rock Mech Geotech Eng 2014;6:287–300. doi:10.1016/J.JRMGE.2014.06.001.
[10] S. Jiang, C. Du, C. Gu, An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM. Structural Engineering and Mechanics, Vol. 49, No. 5 (2014) 597-618.
[11] M. Rezanezhad, S.A. Lajevardi, S. Karimpouli, Crack growth in porous media using XFEM: Comparison of modeling strategies in the Abaqus, J. Aaly. and Num.Meth. in Min. Eng. Vol. 24 (October) (2020) 27-40 (in Persian).
[12] S. Mohammadi, Extended Finite Element Method: For Fracture Analysis of Structures, John Wiley & Sons, 2008.
[13] F. Feng, S. Chen, D. Li, S. Hu, W. Huang, B. Li, Analysis of fractures of a hard rock specimen via unloading of central hole with different sectional shapes, Energy Science & Engineering, 2019. DOI: 10.1002/ese3.432
[14] Z. Zhou, L. Tan, W. Cao, Fracture evolution and failure behaviour of marble specimens containing rectangular cavities under uniaxial loading, Engineering Fracture Mechanics (2017), doi: http:// dx.doi.org/10.1016/j.engfracmech.2017.08.029.
[15] S.Yang, W. Tian, Y. Huang, Z. Ma, L. Fan, Z. Wu, Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression. Engineering Fracture Mechanics. 2018.
[16] Q. Zhu, D. Li, Z. Han, X. Li, Z. Zhou, Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences 115 (2019) 33–47
[17] Q. Yin, H. Jing, H. Su, Investigation on mechanical behavior and crack coalescence of sandstone specimens containing fissure-hole combined flaws under uniaxial compression. Geosciences Journal. 2017. http://dx.doi.org/10.1007/s12303-017-0081-x
[18] Y. Huang, S. Yang, P.G. Ranjith, J. Zhao, Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: Experimental study and particle flow modeling, Computers and Geotechnics 88 (2017) 182–198
[19] Y. Huang, S. Yang, M.R. Hall, W. Tian, P. Yin, Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity, archives of civil and mechanical engineering 18 (2018 ) 1–15
[20] Z. Han, D. Li, Q. Zhu, M. Liu, Z. Sun, Dynamic Fracture Evolution and Mechanical Behavior of Sandstone Containing Noncoplanar Elliptical Flaws under Impact Loading, Advances in Civil Engineering Volume 2018, Article ID 5649357, 16 pages.
[21] M. Rezanezhad, S.A. Lajevardi, S. Karimpouli, Effects of pore-crack relative location on crack propagation in porous media using XFEM method, Theor. Appl. Fract. Mech. 103 (April) (2019) 102241.
[22] M. Rezanezhad, S.A. Lajevardi, S. Karimpouli, Effects of pore(s)-crack locations and arrangements on crack growth modeling in porous media, Theoretical and Applied Fracture Mechanics 107 (2020) 102529.
[23] H.Li, J.Li, H.Yuan, A review of the extended finite element method on macrocrack and microcrack growth simulations, Theoretical and Applied Fracture Mechanics (2018), doi:
https://doi.org/10.1016/ j.tafmec.2018.08.008
[24] N. Moes, J. Dolbow, T.vBelytschko, A finite element method for crack growth without remeshing, J. Numer. Meth. Eng., (1999), 46(1), 132-150.
[25] Z.D. Qian, H. Jing, Fracture properties of epoxy asphalt mixture based on extended finite element method, J. Centr. South Univ., (2012), 19(11), 3335.
[26] A. Benzaama, M. Mokhtari, H. Benzaama, S. Gouasmi, T. Tamine, Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load, Advances in Aircraft and Spacecraft Science, Vol. 5, No. 1 (2018) 129-139 DOI:
https://doi.org/10.12989/aas.2018.5.1.129.
[27] Sih, G.C. Methods of analysis and solutions of crack problems, Director of the Institute of Fracture and Solid Mechanics, Lehigh University, 124-125.
[28] Chen, M., Wang, H. "Effect of pores on crack propagation behavior for porous Si3N4 ceramics", Ceramics International, 20 November 2015.