Numerical Simulation for Predicting The Anisotropy of Faryab Cromite Rock Using PFC Software

Document Type : Research Article

Authors

1 Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Mining and Metallurgy Engineering, Amirkabir University of Technology, Tehran, Iran.

3 Petroleum Department-Engineering Faculty-Shahid Bahonar University of Kerman Kerman-Iran

4 Assistance professor, Department of Mining engineering, science and research branch,azad university, Tehran

Abstract

Summary
In this research, a series of experimental tests and numerical models, including simulation of Uniaxial Compressive Strength test (UCS), Brazilian Tensile Strength test (BTS), and Triaxial Compressive Strength test (TCS), are performed to investigate the anisotropy of rocks from Faryab Chromite Mine. Based on the results of this study, it was found that the highest anisotropy occurred between the X-direction and other directions (Y and Z). The difference in the strength properties of the X-direction compared to other directions was not so great, and the rock samples of Faryab Chromite Mine have low anisotropy also the lateral pressure on chromite rocks has a great impact on their mechanical properties.
 
Introduction
Anisotropy can be considered as one of the main behavioral characteristics of different rock masses and this behavior is mainly due to the non-uniformity and irregular geometry of rock fracture systems. Due to the different mechanical behavior of anisotropic rocks under tension or pressure in different directions, it is necessary to study the anisotropy behavior of rock masses more carefully in the designs to prevent possible accidents. The novelty of the research is that so far not much information is available on the effect of microcracks and anisotropy on the tensile strength of chromite rock samples.
 
Methodology and Approaches
After dividing the main block into smaller parts, cores were taken from rock blocks for analysis, then in order to determine the mechanical properties of rock, several laboratory tests were performed on the cores. To evaluate the behavior of the samples in the uniaxial compressive strength test, samples with a diameter of 54 mm and a height of 115 mm are considered. the Brazilian test was also used to evaluate the tensile strength of rock samples which are cores with a diameter of 54 mm and height of 27 mm. Numerical simulation was performed by using PFC and particle size is controlled by using two parameters: minimum particle radius (Rmin=0.45) and maximum particle radius (Rmax=0.675) and has a normal size distribution.
 
Results and Conclusions
The highest ratio of anisotropic rate is related to the X and Y directions and therefore it can be inferred that the rocks have low anisotropy in the compressive state. Also, it was observed that chromite rock samples in the tensile state showed brittle behavior in all three directions and the tensile cracks were the most common cracks. In this analysis, a lateral pressure of 5 MPa was applied to the samples and it was observed that all three directions showed ductile behavior. In these tests, the expansion of shear cracks had the greatest effect on the failure of rock samples and it was observed that in the enclosed state (triaxial test) the highest anisotropy occurred in the rock samples between the X and Z directions, which is different from the unenclosed state (uniaxial test).

Keywords

Main Subjects


ناهمسانگردی (آنیزوتروپی) واژه‌ای است که از آن‌ برای ارزیابی رفتار مکانیکی یک جسم در برابر نیروهای وارده به آن استفاده می‌شود. یک جسم ناهمسانگرد رفتار مکانیکی غیریکسانی را در همه‌ی جهات نسبت به نیروهای وارده از خود نشان می‌دهد، درصورتی‌که چنین حالتی برای یک جسم همسانگرد دیده نمی‌شود. وقتی‌که ناهمسانگردی یک سنگ بالا باشد، بدین معناست که رفتار­های مکانیکی محاسبه‌شده نسبت به نیرو­های وارده در جهات گوناگون به­طور عمده با یکدیگر متفاوت است و شباهت بین رفتارهای مکانیکی هر جهت کم­ می­باشد و اگر آنیزوتروپی پایین باشد، رفتار­های مکانیکی نسبت به نیروهای اعمالی در جهات متفاوت به یکدیگر شبیه بوده و جسم همسانگرد است. آنیزوتروپی یا ناهمسانگردی را می­توان یکی از اصلی‌ترین خصوصیات رفتاری توده سنگ‌های مختلف دانست. این رفتار که عمدتاً به دلیل غیریکنواختی و هندسه نامنظم سیستم‌های شکستگی سنگ­ها به وجود می­آید، از مسائل اصلی در مراحل مختلف طراحی­های مهندسی ژئومکانیکی و ژئوتکنیکی ازجمله پایداری پی­ها، شیروانی­ها، حفاری­های سطحی و زیرزمینی، معدنکاری و همچنین مهندسی نفت محسوب می­شود. این عارضه همچنین در مهندسی نفت نیز به‌عنوان یک عامل بحرانی در کنترل انحراف گمانه، پایداری، تغییر شکل‌پذیری و شکست شناخته می­شود[1]. از طرف دیگر، یکی از مهم­ترین عواملی که مکانیزم شکست سنگ­ها را تحت تأثیر قرار می­دهد خواص مکانیکی آن­ها ازجمله خواص فشاری و کششی است. ازآنجاکه رفتار مکانیکی سنگ‌های ناهمسانگرد تحت کشش یا فشارش در جهت‌های مختلف متفاوت می­باشد، جهت جلوگیری از بروز حوادث ناگوار احتمالی ضروری است که در طراحی­ها، رفتار ناهمسانگردی توده سنگ­های محیط با دقت بیشتری مورد بررسی قرار گیرند. با توجه به اهمیت ذکرشده، این پدیده از دیرباز مورد توجه محققین مختلف بوده است.

[1]                 Chen, Chao-Shi, Ernian Pan, and Bernard Amadei. 1998. “Determination of Deformability and Tensile Strength of Anisotropic Rock Using Brazilian Tests.” International Journal of Rock Mechanics and Mining Sciences 35 (1): 43–61.
[2]                 Ghiasvand, Sadrollah. 2006. “Anisotrpy of mechanical behavior in rocks”. 10th Symposium of Geological Society of Iran. Tehran (in Persian).
[3]                 LEE, S.-E., CHO, S.-H., SEO, Y.-S., YANG, H.-S., & PARK, H.-M. (2001). The effect of microcracks on the mechanical anisotropy of granite. Journal of the Society of Materials Science, Japan, 50(3Appendix), 7-13.
[4]                 Cai, M., & Kaiser, P. (2004). Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. International Journal of Rock Mechanics and Mining Sciences, 41, 478-483.
[5]                 Dan, D. Q., Konietzky, H., & Herbst, M. (2013). Brazilian tensile strength tests on some anisotropic rocks. International journal of rock mechanics and mining sciences (1997), 58, 1-7.
[6]                 Noorian Bidgoli, M., & Jing, L. (2014). Anisotropy of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 156-164. doi:https://doi.org/10.1016/j.jrmge.2014.01.009.
[7]                 Ismael, M. A., Imam, H. F., & El-Shayeb, Y. (2014). A simplified approach to directly consider intact rock anisotropy in Hoek-Brown failure criterion. Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 486-492.
[8]                 Wang, P., Cai, M., & Ren, F. (2018). Anisotropy and directionality of tensile behaviours of a jointed rock mass subjected to numerical Brazilian tests. Tunnelling and Underground Space Technology, 73, 139-153.
[9]                 Fahimifar, A, Soroush, H, (2001). Rock Mechanics Tests, Theoretical Foundations and Standards, Publications of Soil Technical and Mechanical Laboratories Company, First Edition, Volume 1. (In Persian)
[10]              Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329-1364. doi: https://doi.org/10.1016/j.ijrmms.2004.09.011.
[11]              Akram, M. S., & Sharrock, G. B. (2010). Physical and numerical investigation of a cemented granular assembly of steel spheres. International Journal for Numerical and Analytical Methods in Geomechanics, 34,18, 1896-1934. doi:10.1002/nag.885.
[12]              Cui, Z., Sheng, Q., Leng, X., & Ma, Y. (2019). Investigation of the long-term strength of Jinping marble rocks with experimental and numerical approaches. Bulletin of Engineering Geology and the Environment, 78, 2, 877-882. doi:10.1007/s10064-017-1132-2.
[13]              Huang, H. (1999). Discrete element modeling of tool-rock interaction [Ph. D. Thesis]. Minneapolis, MN: University of Minnesota.
[14]              Kaitkay, P. V. (2002) Modeling of rock cutting using distinct element methods. Kansas State University.
[15]              Lei, S., & Kaitkay, P. (2002). Micromechanical modeling of rock cutting under pressure boundary conditions using distinct element method. TECHNICAL PAPERS-SOCIETY OF MANUFACTURING ENGINEERS-ALL SERIES.
[16]              Tannant, D. D., & Wang, C. (2002). Thin rock support liners modeled with particle flow code. Discrete element methods: Numerical modeling of discontinua, pp. 346-352.
[17]              Deisman, N., Mas Ivars, D., Darcel, C., & Chalaturnyk, R. J. (2010). Empirical and numerical approaches for geomechanical characterization of coal seam reservoirs. International Journal of Coal Geology, 82, 3, 204-212, doi:https://doi.org/10.1016/j.coal.2009.11.003.
[18]              Mas Ivars, D., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Paul Young, R., et al. (2011). The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences, 4, 2, 219-244, doi:https://doi.org/10.1016/j.ijrmms.2010.11.014.
[19]              Asadi, M. S., Rasouli, V., & Barla, G. (2012). A Bonded Particle Model Simulation of Shear Strength and Asperity Degradation for Rough Rock Fractures. Rock Mechanics and Rock Engineering, 45, 5, 649-675. doi:10.1007/s00603-012-0231-4.
[20]              Bahaaddini, M., Hagan, P., Mitra, R., & Hebblewhite, B. (2013a). Numerical investigation of asperity degradation in the direct shear test of rock joints. Eurock. Edited by M. Kwasniewski and D. Lydzba. Taylor & Francis Group, Poland, 391-397.
[21]              Bahaaddini, M., Hagan, P. C., Mitra, R., & Hebblewhite, B. K. (2014). Scale effect on the shear behaviour of rock joints based on a numerical study. Engineering Geology, 181, 212-223. doi:https://doi.org/10.1016/j.enggeo.2014.07.018.
[22]              Bahaaddini, M., Hagan, P., Mitra, R., & Hebblewhite, B. K. (2016). Numerical Study of the Mechanical Behavior of Nonpersistent Jointed Rock Masses. International Journal of Geomechanics, 16, 1, 04015035. doi:10.1061/(ASCE)GM.1943-5622.0000510.
[23]              Bahaaddini, M. (2017). Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test. Rock Mechanics and Rock Engineering, 50, 5, 1141-1155. doi:10.1007/s00603-016-1157-z.
[24]              Jiang, M., Liao, Y., Wang, H., & Sun, Y. (2018). Distinct element method analysis of jointed rock fragmentation induced by TBM cutting. European Journal of Environmental and Civil Engineering, 22, sup1, s79-s98. doi:10.1080/19648189.2017.1385540.
[25]              Yang, S. Q., & Huang, Y.-H. (2018). Failure behaviour of rock-like materials containing two pre-existing unparallel flaws: an insight from particle flow modeling. European Journal of Environmental and Civil Engineering, 22, sup1, s57-s78. doi:10.1080/19648189.2017.1366954.
[26]              Bahaaddini, M., Sheikhpourkhani, A. M., & Mansouri, H. (2019). Flat-joint model to reproduce the mechanical behaviour of intact rocks. European Journal of Environmental and Civil Engineering, 1-2.