Application of Fractal modeling for mapping Hydrothermal Alteration Zones Using ASTER imagery in the southeastern part of IRAN

Document Type : Research Article

Authors

1 School Of Mining Engineering, College Of Engineering, University Of Tehran, Tehran, Iran

2 Kushamadan Consulting, Tehran, Iran

3 Dept. of Mining Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

10.22034/anm.2025.23223.1683

Abstract

This study presents an integrated approach to map hydrothermal argillic alteration zones using ASTER satellite imagery in the Jebal Barez region of southeastern Iran. The novelty of this research lies in the combination of Spectral Angle Mapper (SAM), Matched Filtering (MF), and fractal value–area modeling for anomaly detection and classification. After atmospheric correction using the IARR method, kaolinite spectral signatures were extracted and used in the SAM and MF techniques to delineate altered zones. A total of 34 ground control points were collected across representative lithologies to validate remote sensing outputs. SAM and MF both identified key alteration zones, with MF demonstrating higher classification accuracy (82.35%) compared to SAM (73.52%). The fractal model enabled effective separation of anomalous zones by detecting scale-invariant spatial patterns and extracting critical breakpoints. The integration of fractal modeling with spectral analysis provided improved anomaly delineation and exploration targeting. Field validation confirmed the presence of Pb–Zn mineralization and silica-rich alteration in high-response zones. This methodology offers a replicable framework for mineral exploration in complex terrains using freely available remote sensing data. A detailed workflow chart is also proposed to enhance clarity and reproducibility.

Keywords

Main Subjects


[1]       Davis, J. C. (2002). Statistics and data analysis in Geology (3rd ed.) (pp. 342–353). New York: Wiley.
[2]       Feder, J. (1988). Fractals New York: Plenum.‏
[3]       Stanley, H., & Meakin, P. (1988). Multifractal phenomena in physics and chemistry. Nature, 335(6189), 405–409.
[4]       Evertz, C. J. G., & Mandelbrot, B. B. (1992). Multifractal measures. Appendix B. In H.-O. Peitgen, H. Jurgens, & D. Saupe (Eds.), Chaos and fractals (pp. 922–953). New York: Springer.
[5]       Agterberg, F. P., Cheng, Q., & Wright, D. F. (1993). Fractal modelling of mineral deposits. J. Elbrond & X. Tang (Eds.), Application of computers and operations research in the mineral industry (pp. 43–53), Proceedings of the 24th APCOM Symposium. Montreal: Canadian Institute of Mining Metalling and Petroleum.
[6]       Cheng, Q. (1994). Multifractal modeling and spatial analysis with GIS: Gold potential estimation in the Mitchell-Sulphurets area, northwestern British Columbia. Unpublished Doctoral Dissertation, School of Graduate Studies and Research, University of Ottawa.
[7]       Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 62(2), 331–358.
[8]       Cheng, Q., Bonham-Carter, G. F., Hall, G. E. M., & Bajc, A. (1997). Statistical study of trace elements in the soluble organic and amorphous Fe–Mn phases of surficial sediments, Sudbury Basin, 1, Multivariate and spatial analysis. Journal of Geochemical Exploration, 59(1), 27–46.
[9]       Cheng, Q. (1999b). Multifractality and spatial statistics. Computers & Geosciences, 25(9), 949–961.
[10]    Panahi, A., Cheng, Q., & Bonham-Carter, G. F. (2004). Modeling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power-spectrum analysis: a case study from Gowganda, Ontario. Geochemistry: Exploration, Environment, Analysis, 4(1), 59–70.
[11]    Zuo, R., & Xia, Q. (2009). Application fractal and multifractal methods to mapping prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China. Geochimica et Cosmochimica Acta, 73, A1540.
[12]    Deng, J., Fang, Y., Yang, L. Q., Yang, J. C., Sun, Z. S., Wang, J. P., et al. (2001). Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems. Acta Geologica Sinica, 75(2), 220–232.
[13]    Deng, J., Wang, Q. F., Huang, D. H., Wan, L., Yang, L. Q., & Gao, B. F. (2006). Transport network and flow mechanism of shallow ore-bearing magma in Tongling ore cluster area. Science in China (Series D), 49(4), 397–407.
[14]    Mandelbrot, B. B. (1983). The fractal geometry of nature (updated and augmented). New York: Freeman.
[15]    Turcotte, D. L. (2002). Fractals in petrology. Lithos, 65(3–4), 261–271.
[16]    Wang, Q. F., Deng, J., Liu, H., Yang, L. Q., Wan, L., & Zhang, R. Z. (2010). Fractal models for ore reserve estimation. Ore Geology Reviews, 37(1), 2–14.
[17]    Raines, G. L. (2008). Are fractal dimensions of the spatial distribution of mineral deposits meaningful? Natural Resources Research, 17, 87–97.
[18]    Carranza, E. J. M., Owusu, E., & Hale, M. (2009). Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita, 44(8), 915–938.
[19]    Li, C. J., Ma, T. H., & Shi, J. F. (2003). Application of a fractal method relating concentration and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77(2), 167–175.
[20]    Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130.
[21]    Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., & Omran, N. R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 108(3), 220–232.
[22]    Ahmadi, H. and Uygucgil, H. (2021) Targeting Iron Prospective within the Kabul Block (SE Afghanistan) via Hydrothermal Alteration Mapping Using Remote Sensing Techniques. Arabian Journal of Geosciences, 14, Article No. 183.
[23]    Hdeid, O. M., Morsli, Y., Raji, M., Baroudi, Z., Adjour, M., Nebagha, K. C, & Vall, I. B. (2024). Application of Remote Sensing and GIS in Mineral Alteration Mapping and Lineament Extraction Case of Oudiane Elkharoub (Requibat Shield, Northern of Mauritania). Open Journal of Geology, 14(9), 823-854.‏
[24]    Chen, L., Sui, X., Liu, R., Chen, H., Li, Y., Zhang, X., & Chen, H. (2023). Mapping alteration minerals using ZY-1 02D hyperspectral remote sensing data in coalbed methane enrichment areas. Remote Sensing, 15(14), 3590.‏
[25]    Wu, C., Dai, J., Zhou, A., He, L., Tian, B., Lin, W. & Bai, L. (2023). Mapping alteration zones in the Southern section of Yulong copper belt, Tibet using multi-source remote sensing data. Frontiers in Earth Science, 11, 1164131.‏
[26]    Khademian, F., Alaminia, Z., Nadimi, A., Lentz, D. R., Ghasemi, A., & Sharifi, M. (2024). Structural and alteration zones controls on Cu mineralisation in the northwest of Nain (northeastern Isfahan, Iran): A remote sensing perspective. Journal of African Earth Sciences, 211, 105151.‏
[27]    Alavi, M. (1980). Tectonostratigraphic evolution of the Zagrosides of Iran. Geology, 8(3), 144-149.‏
[28]    Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), 211-238.
[29]    Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), 210-265.‏
[30]    Berberian, F., Muir, I. D., Pankhurst, R. J., & Berberian, M. (1982). Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5), 605-614.‏
[31]    Rowan, L. C., Hook, S. J., Abrams, M. J., & Mars, J. C. (2003). Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system. Economic Geology, 98(5), 1019-1027.‏
[32]    Clark, R. N., King, T. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth, 95(B8), 12653-12680.‏
[33]    Kruse FA, Lefkoff AB, Boardman JB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz A.F.H (1993)The Spectral Image Processing System (SIPS) – interactive visualization and analysis of imagingspectrometer data, Remote Sensing of Environment 44: 145–163.
[34]    Tangestani MH, Mazhari N, Agar B, Moore F (2008) Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr–e–Babak, SE Iran, International Journal of Remote Sensing 29: 2833–2850.
[35]    Habashi, J., Moghadam, H. J., Oskouei, M. M., Pour, A. B., & Hashim, M. (2024). PRISMA hyperspectral remote sensing data for mapping alteration minerals in sar-e-châh-e-shur region, birjand, Iran. Remote Sensing, 16(7), 1277.‏
[36]    Rossi, C., & Gholizadeh, H. (2023). Uncovering the hidden: Leveraging sub-pixel spectral diversity to estimate plant diversity from space. Remote Sensing of Environment, 296, 113734.‏
[37]    Khojastehfar, S. , Ranjbar, H. and Shafiei Bafti, S. (2023). Sub-pixel Mineral Mapping of Serpentine and Magnesite for Chromite Exploration, Using Hyperion (EO1) Images. Journal of Analytical and Numerical Methods in Mining Engineering13(35), 39-49. doi: 10.22034/anm.2023.18911.1565
[38]    Ilyati, I. , Amanian, N. , Ansari, A. and Mokhtari, M. H. (2020). Combination of Remote Sensing and Ground Penetrating Radar methods to estimate suitable areas for locating subsurface dams in Abouzeidabad Plain. Journal of Analytical and Numerical Methods in Mining Engineering10(25), 1-11. doi: 10.29252/anm.2020.13980.1443
[39]    Mokhtari, Z. and Seifi, A. (2021). Detection of Hydrothermal Alteration Zones Using ASTER Remote Sensing Data in Turquoise mine of Neyshabur. Journal of Analytical and Numerical Methods in Mining Engineering11(28), 1-22. doi: 10.22034/anm.2021.203