Plotting Grade-Tonnage Curves with Fractal Methods and Comparing Them by Geostatistical Methods; a Case Study: Koh-e-Zar Gold Deposit in Torbat-e-Heydaryeh

Document Type : Research Article

Authors

Abstract

The variation in tonnage and average grade vs. cut-off grade, called grade-tonnage curves, is one of the most important factors in investment, risk assessment and uncertainty for exploitation of a deposit. These curves are plotted with the use of exploration data and through classic and geo-statistical methods. In this paper, new fractal methods have been used to plot these curves. In fractal methods, without replacing or omitting outliers, one can fit a power-law function to data. Then, using this relation, one could calculate volume (using thickness variable), average grade (using grade variable) and metal content (using grade-thickness variable) and then with these parameters, grade-tonnage curves are plotted. In this case study one of the mineralization zones of Koh-e-Zar gold deposit is used and through using number-size and concentration-area fractal models tonnage-grade curves have been plotted. Finally, the results are compared with traditional geo-statistical methods that indicate the minimum difference between geo-statistics and fractal methods in resource estimation is zero and the maximum difference is 22.2%. These differences for average grade estimation are 0.3% 14.4% respectively. The descriptive statistics proves no significant difference between the results. The most important advantages of applying fractal method include the use of initial data, the possibility of estimation with irregular and low-density data, and easier calculations.

Keywords

Main Subjects


[1] Tercan, A.E. and Akcan, E.; 2004; “Assessment of uncertainty associated with grade-tonnage curves using geostatistical simulation”, Institution of Mining and Metallurgy Transactions. Section A: Mining Technology, Vol. 113, No. 2, pp. A129-A136.
[2] Kentwell, D.J., Bloom, L.M. and Comber, G.A.; 1999; “Improvements in grade tonnage curve prediction via sequential Gaussian fractal simulation”, Mathematical Geology, Vol. 31, No. 3, pp. 311-325.
[3] Lopes, J.A., Rosas, C.F., Fernandes, J.B. and Vanzela, G.A.; 2011; “Risk quantification in grade-tonnage curves and resource categorization in a lateritic nickel deposit using geologically constrained joint conditional simulation”, Journal of Mining Science, Vol. 47, No.  2, pp. 166-176.
[4] Goodfellow, R., Consuegra, F.A., Dimitrakopoulos, R. and Lloyd, T.; 2012; “Quantifying multi-element and volumetric uncertainty, Coleman McCreedy deposit, Ontario”, Canada, Computers & Geosciences, Vol. 42, pp. 71-78.
[5] Li, C. j., Ma, T.H. and Shi, J.F.; 2003; “Application of a fractal method relating concentration and distances for separation of geochemical anomalies from background”, Journal of Geochemical Exploration, Vol. 77, pp. 167-176.
[6] Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q. and Liu, H.; 2010; “Delineation and exploration of geochemical anomalies using fractal models in the Heging area, Yunnan Province, China”, Journal of Geochemical Exploration, Vol. 105, pp. 95-105.
[7] Afzel, P., Fadakar Alghalandis, Y., Moarelvand, P., Rashidnejad Omran, N. and Asadi Haroni, H.; 2012; “Application of power-spectrum fractal method for detecting hypogene, supergene enrichment, leached and barren zone in Kahang Cu porphyry deposit, central Iran”, Journal of Geochemical Exploration, Vol. 112, pp. 131-138.
[8] Shu-yun, X., Yong-guo, Y., Zheng-yu, B., Xian-zhong, K. and Xiao-long, L.; 2009; “Mineral resource analysis by parabolic fractals”, Mining Science and Technology, Vol. 19, pp. 91-96.
[9] Wang, Q., Deng, J., Zhao, J., Li, N. and Wan, L.; 2012; “The fractal relationship between orebody tonnage and thickness”, Journal of Geochemical Exploration, Vol. 122, pp. 4-8.
[10] Wang, Q.F., Wan, L., Zhang, Y., Zhao, J. and Liu, H.; 2011; “Number-average size model for geological systems and its application in economic geology”, Nonlinear Processes in Geophysics, Vol. 18, pp. 447–454.
[11] Wang, Q., Deng, J., Liu, H., Yang, L., Wan, L. and Zhang, R.; 2010; “Fractal models for ore reserve estimation”, Ore Geology Reviews, Vol. 37, pp. 2-14.
[12] Mandelbrot, B.B.; 1983; the fractal geometry of the nature, Freeman, New York, 468pp.
[13] Wang, Q., Deng, J., Zhao, J., Liu, H., Wan, L. and Yang, L.; 2010; “Tonnage-cutoff model and average grade-cutoff model for a single ore deposit”, Ore Geology Reviews, Vol. 38, pp.113-120.
[14] Wang, q., Deng, J., Liu, H., Yang, L., Wan, L. and Zhang R.; 2010; “Fractal models for estimating local reserves with different mineralization qualities and spatial variations”, Journal of Geochemical Exploration, Vol. 37, pp. 2-14.
[15] شرکت طلای زرمهر؛ (1383)؛ گزارش نهایی طرح اکتشافی کانسار طلای کوه زر تربت حیدریه، 372 صفحه.
[16] مظلومی، علیرضا؛ کریم پور، محمد حسن؛ رسا، ایرج؛ رحیمی، بهنام؛ عابدینی، وثوقی؛ (1387)؛ "کانسار طلای کوه زر تربت حیدریه، مدل جدیدی از کانی سازی طلا"، مجله بلور شناسی و کانی شناسی ایران، سال شانزدهم، شماره 3، ص 363 تا 376.
[17] حسنی پاک، علی اصغر؛ شرف الدین، محمد؛ (1380)؛ تحلیل داده­های اکتشافی، انتشارات دانشگاه تهران.