[1] Pine R.J., Coggan, J. S., Flynn, Z., & Elmo, D. (2006). The development of a comprehensive numerical modelling approach for pre-fractured rock masses. Rock Mechanics and Rock Engineering. 39. 5: 395- 419.
[2] Rogers, S. F., Kennard, D. K., Dershowitz, W. S., & vanas, A. (2007). Characterising the in situ fragmentation of a fractured rock mass using a discrete fracture network approach, Rock Mechanics: Meeting Society's Challenges and Demands - Eberhardt, Stead & Morrison (eds) Taylor & Francis Group, London, ISBN 978-0-415-44401-9.
[3] Piteau, D. R. (1972). Engineering geology considerations and approach in assessing the stability of rock slopes. Bulletin of the Association of Engineering Geologists IX, 301–320.
[4] Piteau, D. R., & Martin, D. C. (1977). Slope stability analysis and design based on probability techniques at Cassiar Mine. CIM Bulletin, pp.139–150.
[5] Wanga, C., Tannant, D. D., & Lilly, P. A. (2003). Numerical analysis of the stability of heavily jointed Rock slopes using PFC2D. International Journal of Rock Mechanics & Mining Sciences (40), 415–424.
[6] Tollenaar R. N. (2008). Characterization of discrete fracture networks and their influence on caveability and fragmentation. (Master of Applied Science) The University of British Colombia.
[7] Brown, E.T. (2003). Block Caving Geomechanics, The International Caving Study Stage I 1997-2000, Julius Kruttschnitt Mineral Research Centre, Brisbane, Australia.
[8] Laubscher, D.H. (2003). Cave Mining Handbook, De Beers, p. 138.
[9] El-Ramly, H., Morgenstern, N. R., & Cruden, D. M. (2002). Probabilistic slope stability analysis for practice. Can. Geotech. J. 39, 665–683.
[10] Price D.G. (2009). Engineering Geology: Principles and Practice, Edited and compiled: M.H.de Freitas, Springer,.