[1] Höffler, F., & Kübler, M. (2007). Demand for storage of natural gas in northwestern Europe: Trends 2005–30. Energy Policy, 35(10), 5206-5219
[2] Energy Information Administration; (2002); “The Basic of Underground Natural Gas Storage”. U.S. Energy Information Administration.
[3] Veil, J. A. (1997). Costs for Off-Site Disposal of Nonhazardous Oil Field Wastes: Salt Caverns Versus other Disposal Methods. ARGONNE NATIONAL LAB IL ENVIRONMENTAL ASSESSMENT AND INFORMATION SCIENCES DIV.
[4] U.S. Department of Energy; Argonne National Laboratory. (2010). “Argonne Home-Environmental Science Division -Programs/Projects”
http://www.ead.anl.gov/titan_rutile.htm; pp. 1-2.
[5] Thoms, R. L., & Gehle, R. M. (2000). A brief history of salt cavern use. In The 8th World Salt Symposium.[S. l.]: Elsevier (Vol. 2, pp. 207-214).
[6] Arbent, M. (2001). “Environmental geology”. Translated by Hormozi, Ahmad. Tehran Univestiy Publication Center.
[7] Warren, J. K. (2006). Evaporites: sediments, resources and hydrocarbons. Springer Science & Business Media.
[8] Veil, J. A. (2000); “Salt cavern & their use for disposal of oil field wastes”, By Argonne National Laboratory for the U.S. Department of Energy.
[9] Istvan, J. A., Evans, L. J., Weber, J. H., & Devine, C. (1997). Rock mechanics for gas storage in bedded salt caverns. International Journal of Rock Mechanics and Mining Sciences, 34(3), 142-e1.
[10] Staudtmeister, K., & Rokahr, R. B. (1997). Rock mechanical design of storage caverns for natural gas in rock salt mass. International Journal of Rock Mechanics and Mining Sciences, 34(3), 300-e1.
[11] Heusermann, S., Rolfs, O., & Schmidt, U. (2003). Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model. Computers & structures, 81(8), 629-638.
[12] Huang, X., & Xiong, J. (2011). Numerical simulation of gas leakage in bedded salt rock storage cavern. Procedia Engineering, 12, 254-259.
[13] Berest, P., Brouard, B., Karimi-Jafari, M., & Van Sambeek, L. (2007). Transient behavior of salt caverns—interpretation of mechanical integrity tests. International Journal of Rock Mechanics and Mining Sciences, 44(5), 767-786.
[14] Bahroudi, A., Talbot, C. J. (2008). “Shapes and timing of structures in Hormouz salt in the Zagros basin”, Hans Ramberg Tectonic Laboratory, Department of Earth science, Uppsala University.
[15] Jackson, M. P. I., Cornelius, R. R., Craig, C. H., Gansser, A., Stocklin, J, Talbot, C. J. (1990). “Salt Diapirs of the Great Kavir, Central Iran”, Geological Society of American.
[16] Hampson, G., Lonergan, L., Sepehr, M., Bahroudi, A. (2005). “Sedimentological and stratigraphic record of salt diapir evolution, Southern Iran”, Department of Earth Science and Engineering , Imperial College.
[17] Rocscience Incorporation. (2005). Phase 2 Manual.
[18] DeVries, K. L.; Mellegard, K. D.; Callahan, G. D. (2002). “Salt Damage Criterion Proof-of-Concept Research Final Report”, Rapid City, South Dakota, pp. 1-20.
[19] DeVries K. L.; Mellegard K. D., Callahan G. D. (2003); “Cavern design using a salt damage criterion: proof-of-concept research final report. In: Proceedings of the SMRI spring meeting”, Houston, 1-18.
[20] Itasca Consulting Group, Inc. (2005). “FLAC 3D Fast Lagrangian Analysisof Continua in 3Dimensions”. Ver. 3.00 User’s Manual. Minneapolis: Itasca.
[21] Lee, B.; Kesler, M. (1975). “A Generalized Thermodynamic Correlation Based on Three-parameter Corresponding States”. AIChE J., 21(3), 510-527.
[22] Sonntag, R. E., Borgnakke, C., Van Wylen, G. J., & Van Wyk, S. (1998). Fundamentals of thermodynamics (Vol. 6). New York: Wiley.