[1] Etgen, J. (1986). High-order finite-difference reverse time migration with the 2-way non-reflecting wave equation. Stanford Exploration Project, report SEP-48, 133–146.
[2] Kosloff, D., Filho, A., Tessmer, E., & Behle A. (1989). Numerical solution of the acoustic and elastic wave equation by new rapid expansion method. Geophysical Prospecting, (37), 383–394.
[3] Pestana, R. C., & Stoffa, P. L. (2010). Time evolution of the wave equation using rapid expansion method. Geophysics, 75(4), T121-T131.
[4] Soubaras, R., & Zhang, Y. (2008). Two-step explicit marching method for reverse time migration. 70th Annual International Conference and Exhibition, EAGE, Extended Abstracts.
[5] Chen, J. M. (2007). High-order time discretizations in seismic modelling. Geophysics, 72(5), SM115–SM122.
[6] Dablain, M. A. (1986). The application of high-order differencing to the scalar wave equation. Geophysics, 51, 54–66.
[7] Zhang, Y., & and Zhang, G. (2009). One-step extrapolation method for reverse time migration. Geophysics, 74( 4), A29–A33.
[8] Schmidta, K., Diazb, J. & Heiera, C. (2015). Non-conforming Galerkin finite element methods for local absorbing boundary conditions of higher order. Computers & Mathematics with Applications, 70(9), 2252-2269.
[9] Stanglmeiera, M., Nguyena, N.C., Perairea J. & Cockburnb, B. (2016). An explicit hybridisable discontinuous Galerkin method for the acoustic wave equation. Computer Methods in Applied Mechanics and Engineering, 300,748–769.
[10] Baldassari, C., Barucq, H., Calandra, H., Denel, B., Diaz, J. (2009). Ultrasonic Wave Propagation in Non Homogeneous Media: The reverse time migration technique coupled with finite element methods. Springer Berlin Heidelberg, pp 207-216.
[11] Tal-Ezer, H., Kosloff, D., & Koren Z. (1987). An accurate scheme for forward seismic modelling. Geophysical Prospecting, (35), 479–490.
[12] Tessmer, E. (2011). Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration. Geophysics, 76(4), S177–S185.
[13] Skell, R. H., Zhang G., & Schlick, T. (1997). A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications. SIAM Journal on Numerical Analysis, (18), 203–222.
[14] Bonomi, E., Brieger L., Nardone, C., & Pieroni, E. (1998). 3D spectral reverse time migration with no-wraparound absorbing conditions. 78th Annual International Meeting, SEG, Expanded Abstracts, 1925–1928.
[15] Arnold, V. I. (1989). Mathematical methods of classical mechanics (2nd ed.). 60, Springer.
[16] Yoshida, H. (1990). Construction of higher order symplectic integrators. Physics Letters A, 150, 262–268.
[17] Sexton, J. C., & Weingarten D. H. 1992. Hamiltonian evolution for the hybrid Monte Carlo algorithm. Nuclear Physics B, 380(3):665.
[18]Araujo, E. S., Pestana, C. R., & dos Santos, A. W. G. (2013). Symplectic schmes and poyting vector in the reverse time migration. 83rd Annual International Meeting, SEG, Expanded Abstracts.