Investigating the effects of loading rate and mixing design on concrete's direct tensile strength using the CTLC test

Document Type : Research Article

Authors

1 Dept. of Mining and Metallurgy Engineering, Yazd University, Yazd, Iran

2 Dept. of Mining Engineering, Faculty of Engineering, Kashan University, Kashan, Iran

Abstract

Tensile strength of concrete is measured using direct tensile tests on rectangular concrete samples with dimensions: 19 cm in length, 16 cm in width, 6 cm in thickness, and a central hole of 9 cm in diameter. The concrete specimens were prepared in the laboratory by mixing cement, fine sand, gravel, and water in appropriate proportions. Calibration of the new direct tensile strength test apparatus was carried out to determine the tensile strength of different brittle materials (gypsum and concrete) under various loading rates and different mixing design types. The direct tensile strength tests were accomplished by a compressive-to-tensile load converter (CTLC) fitted with the specimens and placed in the universal testing machine in the laboratory. For the indirect Brazilian tensile strength tests, loading rates of 5, 10, and 15 kg/s were considered. For the direct tensile strength tests, loading rates of 2, 2.5, and 3 mm/min were used. The results of this paper show that the direct tensile strengths measured by the CTLC apparatus are approximately 25% lower than those measured by the Brazilian tests. The average tensile strengths of the geo-material samples increase as both the loading rate and the ratio of fine sand to gravel increase.

Keywords

Main Subjects


[1]        Resan SF, Chassib SM, Zemam SK, Madhi, MJ. 2020 New approach of concrete tensile strength test. Case Studies in Construction Materials.: 12, e00347. https://doi.org/10.1016/j.cscm.2020.e00347
[2]       Andreev، G.، 1991 A review of the Brazilian test for rock tensile strength determination. Part II: contact conditions. Mining Science and Technology. 13(3): p. 457-465. https://doi.org/10.1016/0167-9031(91)91035-G
[3]        Fu   J, Sarfarazi   V, Haeri   H, Shahbazia   A, Marji   MF, Yu Y, 2022. Study of tensile crack growth in rock-like materials under punch shear test. Theoretical and Applied Fracture Mechanics: 121.p.103509. https://doi.org/10.1016/j.tafmec.2022.103509.
[4]       Aghakhani MR., Fatehi M, Hashemzade A, Abdolahipour   A, Sanei   M. 2023. Prediction of elastic parameters in gas reservoirs using ensemble approach. Environ Earth Sci 82, 269. https://doi.org/10.1007/s12665-023-10958-4.
[5]       Sanei, M., Faramarzi, L., Fahimifar, A., Goli, S., Mehinrad, A., Rahmati, A. Shear strength of discontinuities in sedimentary rock masses based on direct shear tests. International Journal of Rock Mechanics and Mining Sciences, 2015: vol.75, pp. 119-131. https://doi.org/10.1016/j.ijrmms.2014.11.009.
[6]        Sanei, M., Faramarzi, L. Empirical development of the rock mass deformation modulus. Journal of Geological Resource and Engineering, 2014: vol.2, No.1, pp.55-67. https://doi.org/10.17265/2328-2193/2014.01.006.
[7]       Fakhimi A. and Labuz J.F. 2022. A simple apparatus for tensile testing of rock. International Journal of Rock Mechanics and Mining Sciences.: 158: p. 105208.
[8]        Zhou   L, Haeri   H, Sarfarazi   V, Marji   MF, Naderi   AA, Vayani   MH, 2022. Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus.: Vol. 31, No. 1 p 71-84 https://doi.org/10.12989/cac.2023.31.1.071  
[9]        Li   R، Liu   L, Zhang   ZH, An   H, 2020.Experimental Study of Brazilian Tensile Strength of Concrete Under Static Loads. in E3S Web of Conferences. EDP Sciences. Volume 206, p 4:
https://doi.org/10.1051/e3sconf/202020601018
[10]    Khan MI. 2012, Direct tensile strength measurement of concrete. Applied mechanics and materials, ،   117: p. 9-14.
[11]    Qing L، Shi   X, Mu   R, Cheng   Y, 2018: Determining tensile strength of concrete based on experimental loads in fracture test. Engineering Fracture Mechanics   202: p. 87-102.
[12]    Li   D. and Wong   L.N.Y, 2013. The Brazilian disc test for rock mechanics applications: review and new insights. Rock mechanics and rock engineering: ، 46: p. 269-287.
[13]    Alhussainy   F, Hasan   HA, Rogic   S, Sheikh MN, Hadi N.S, 2016. Direct tensile testing of self-compacting concrete. Construction and Building Materials: 112: p. 903-906.
[14]    Silva RV, de Brito G and Dhir RK, 2015. Tensile strength behavior of recycled aggregate concrete. Construction and Building Materials, 83: p. 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
[15]    Mubasher B، Bakhshi M and Barsby C،2014. Back calculation of residual tensile strength of regular and high-performance fiber reinforced concrete from flexural tests. Construction and Building Materials:70:p.243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
[16]    Abdollahipour A, Marji MF, 2020. thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments, Renewable Energy. Elsevier: 153, 1488-1503.
[17]    Fu J, Haeri H, Sarfarazi V, Asgari K, Ebneabbasi P, Marji   MF, M Guo, 2022. Extended finite element method simulation and experimental test on failure behavior of defects under uniaxial compression, Mechanics of Advanced Materials and Structures, 29 
[18]    Abdollahipour   A, Fatehi   MF, Yarahmadi   BAR, Gholamnejad   J, 2016. Numerical investigation of effect of crack geometrical parameters on hydraulic fracturing process of hydrocarbon reservoirs, Journal of Mining and Environment: 7 (2), 205-214.
[19]    Gomez   J.T, Shukla   A and Sharma   A, 2001. Static and dynamic behavior of concrete and granite in tension with damage. Theoretical and Applied Fracture Mechanics،. 36(1): p. 37-49 https://doi.org/10.1016/S0167-8442(01)00054-4
[20]    Fakhri   D, Hossein   M, and Mahdikhani   M, 2022. Effect of glass and polypropylene hybrid fibers on Mode I، Mode II، and Mixed-Mode fracture toughness of concrete containing micro-silica and limestone powder. Journal Mining. Environments:   13: p. 559-577. https://doi.org/10.22044/jme.2022.11936.2188
[21]    Sarfarazi V, Haeri H, Ebneabbasi P, Shemirani AB, Hedayat   AR, 2018.  Determination of tensile strength of concrete using a novel apparatus. Construction and Building Materials: 166: p. 817-832.
[22]    Zain   M.F.M, Mahmud   HB, Ilham   A Faizal M, 2002. Prediction of splitting tensile strength of high-performance concrete. Cement and Concrete Research، 32(8): p. 1251-1258.  https://doi.org/10.1016/S0008-8846(02)00768-8
[23]    Gong F, Zhang L, and Wang S, 2019. Loading rate effect of rock material with the direct tensile and three Brazilian disc tests. Advances in Civil Engineering: 2019, Article ID 6260351, 8 pages.  https://doi.org/10.1155/2019/6260351.
[24]    Zoumaki  M,  Tsongas  K,  Tzetzis  D, Mansour G, 2022. Corn Starch-Based Sandstone Sustainable Materials: Sand Type and Water Content Effect on Their Structure and Mechanical Properties. Sustainability:14(14): p.8901.  https://doi.org/10.3390/su14148901
[25]    Panian، R. and M. Yazdani. 2020. Estimation of the service load capacity of plain concrete arch bridges using a novel approach: Stress intensity factor. in Structures. Elsevier:
[26]    Sanei M, Rahmati A, Faramarzi L, Goli S, Mehinrad, A, 2013. Estimation of rock mass deformation modulus in Bakhtiary dam project in Iran. In: 3rd ISRM SINOROCK Symposium, Rock Characterisation, Modelling and Engineering Design Methods, Shanghai, China, pp 161-164.
[27]    Guo L, Peng X,  Zhao Y, Liu G, Tang G,  Pan A. 2022. Experimental study on direct tensile properties of cemented paste backfills. Advances in Design and Implementation of Cementitious Backfills:(ADICB). https://doi.org/10.3389/fmats.2022.864264
[28]    Andreev GE, 1991. A review of the Brazilian test for rock tensile strength determination. Part I: calculation formula. Mining Science and Technology. 13(3): p. 445-456.: https://doi.org/10.1016/0167-9031(91)91006-4
[29]    Sarfarazi V. Haeri H, Ebneabbasi P, Shemirani AB, Hedayat, AR. 2018.  Determination of tensile strength of concrete using a novel apparatus. Construction and Building Material.:    166: p. 817-832.
[30]    Nianxiang، X. and L. Wenyan. 1989. Determining tensile properties of mass concrete by direct tensile test. Materials Journal.: 86(3): p. 214-219.
[31]    Kim JJ, and Reda Taha M, 2014. Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens. Advances in civil engineering: Article.ID 156926| https://doi.org/10.1155/2014/156926،.
[32]    Sarfarazi V, Ghazvinian A, Schubert W,  Nejati HR, Hadei, R،  2016.  A new approach for measurement of tensile strength of concrete. Periodica Polytechnica Civil Engineering: 60(2): p. 199-203.
[33]    Liao WC, Chen PS, Hung CW,  Wagh SK, 2020. An innovative test method for tensile strength of concrete by applying the strut-and-tie methodology. Materials:13(12):p.2776. https://doi.org/10.3390/ma13122776
[34]    Sarfarazi V, Haeri H and Marji MF. 2021. On Direct Tensile Strength Measuring of Anisotropic Rocks. Journal of Mining and Environment: 12(2): p. 491-499.
[35]    Haeri, H., Sarfarazi, V., Marji, M. F., Yavari, M. D., & Zahedi-Khameneh, A. (2021). Direct tensile strength measurement of granite by the universal tensile testing machine. Smart Structures and Systems, 27(4), 559–569. https://doi.org/10.12989/SSS.2021.27.4.559
[36]    Fu, J., Sarfarazi, V., Haeri, H. et al. Improving the tensile strength of reinforced concrete: evaluating the impact of different fiber additives through numerical and experimental analysis. Comp. Part. Mech. 12, 775–792 (2025). https://doi.org/10.1007/s40571-024-00839-3.
[37]    Wang, J., Wu, Z., Deng, S., Wang, M., Tao, J., Xie, A., & Wang, Z. (2025). The dynamic tensile strength prediction model and tensile behavior of concrete considering pores based on the impact splitting tensile test. In Journal of Building Engineering (Vol. 104, p. 112272). Elsevier BV. https://doi.org/10.1016/j.jobe.2025.112272.
[38]    Heydari, M., Aghakhani Emamqeysi, M. R. and Sanei, M. (2022). Finite element analysis of wellbore stability and optimum drilling direction and applying NYZA method for a safe mud weight window. Journal of Analytical and Numerical Methods in Mining Engineering, 11(29), 67-76. doi: 10.22034/anm.2022.2582
[39]    Dehghani, B., Faramarzi, L. and Sanei, M. (2014). Stability Analysis of Powerhouse Caverns of Bakhtiary Dam Using 3DEC Software. Journal of Analytical and Numerical Methods in Mining Engineering, 4(8), 95-108. doi: 10.29252/anm.2014.576
[40]    Rajabi, H., Amin Nejad, B. and Ebrahimi, H. (2023). Numerical Modeling of Fluid Behavior on the Body of a Concrete Double-Arched Dam Considering the Interaction of Water and Structure under Impact Loads. Journal of Analytical and Numerical Methods in Mining Engineering, 13(35), 63-77. doi: 10.22034/anm.2023.18761.1561