کاربرد روش آنالیز مؤلفه‌های اصلی در پیش‌بینی نرخ نفوذTBM با استفاده از شبکه‌های عصبی مصنوعی

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه صنعتی اصفهان

چکیده

از فاکتورهای مهم در پیش‌بینی عملکرد TBM، تعیین نرخ نفوذ حفاری و نرخ پیشروی است. هدف اصلی از این مطالعه، بررسی استفاده از آنالیز مؤلفه‌های اصلی در پیش‌بینی نرخ نفوذ TBMبا استفاده از روش شبکه‌های عصبی مصنوعی است. یکی از بخش‌های مهم در استفاده از روش شبکه‌های عصبی به منظور پیش‌بینی، انتخاب پارامترهای ورودی است. آنالیز مؤلفه‌های اصلی یکی از روش‌هایی است که با استفاده از آن می‌توان پارامترهای مؤثر بر نرخ نفوذ را مشخص کرد. برای دستیابی به این هدف، یک پایگاه داده متشکل از خواص توده سنگ، خواص ماده سنگ و مشخصات ماشین ایجاد شده است و سپس نرخ نفوذ با منظور کردن چندین مدل ورودی با استفاده از شبکه‌های عصبی مصنوعی در 10 کیلومتر حفاری تونل زاگرس بدون آنالیز مؤلفه‌های اصلی پیش‌بینی شده است و سپس با توجه به تعدد پارامترهای ورودی در شبکه از آنالیز مؤلفه‌های اصلی در انتخاب بهترین پارامترهای ورودی استفاده شده است که در نهایت شبکه‌ای با 11 ورودی، مورد تأیید قرار گرفته است. از مقایسه نتایج پیش‌بینی نرخ نفوذ با استفاده از شبکه‌های عصبی مصنوعی بدون آنالیز مؤلفه‌های اصلی و شبکه عصبی مصنوعی با آنالیز مؤلفه‌های اصلی این نتیجه حاصل می‌شود که استفاده از آنالیز مؤلفه‌های اصلی تأثیر به سزایی در انتخاب پارامترهای ورودی شبکه و همچنین نتایج پیش‌بینی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Principal Component Analysis in Prediction of Penetration Rate of TBM Using Artificial Neural Networks

نویسندگان [English]

  • Mohammad Mokhtarian
  • Mosleh Eftekhari
  • Alireza Baghbanan
Isfahan University of Technology
چکیده [English]

Performance analysis and accurate prediction of Penetration Rate (PR) of a TBM have been the ultimate goals of many research works. A reliable prediction of a TBM performance is necessary in budget control and also time schedule planning in underground excavation projects. This research aims to investigate the application of Principal Component Analysis (PCA) in prediction of penetration rate of TBM using Artificial Neural Networks (ANN), which has not been used and reported in previous studies in this field of study. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. In this study, the obtained data from 10 KM of excavated Zagros tunnel project in Iran are used to predict PR of a TBM using ANN modeling. For predicting PR of TBM, mechanical properties of intact rock and rock masses and also operational parameters such as recorded values of torque and thrust are required. Various simulations with and without PCA have been conducted to achieve the optimum network for predicting PR. The obtained results of simulation show that the network with PCA is more appropriate and the network with 11 principal components as input parameters and 16 neurons in hidden layer is the optimum structure for predicting of PR in this study. The results of developed ANN method show that the optimum network is very efficient for predicting the PR in Zagros tunnel.

کلیدواژه‌ها [English]

  • Tunnel Boring Machine (TBM)
  • Penetration rate
  • Artificial Neural Networks
  • Principal component analysis
[1]. Yagiz, S.; 2008; "Utilizing rock mass properties for predicting TBM performance in hard rock condition", Tunnelling and Underground Space Technology, 23, 326-339.
[2]. Graham, P.; 1976; "Rock exploration for machine manufacturers", Exploration for rock engineering, 173-180.
[3]. Farmer, I.; Glossop, N.; 1980; "Mechanics of disc cutter penetration", Tunnels and Tunnelling, 12, 22-25.
[4]. Ramamurthy, T.; 2008; "Penetration rate of TBMs", Proceedings of the world tunnel congress.
[5]. Yagiz, S.; Gokceoglu, C.; Sezer, E. ; Iplikci, S.; 2009; "Application of two non-linear prediction tools to the estimation of tunnel boring machine performance", Engineering Applications of Artificial Intelligence, 22, 808-814.
[6]. Gholamnejad, J.; Tayarani, N.; 2010; "Application of artificial neural networks to the prediction of tunnel boring machine penetration rate", Mining Science and Technology (China), 20, 727-733.
[7]. Eftekhari, M.; Baghbanan, A.; Bayati, M.; 2010; "Predicting penetration rate of A Tunnel Boring Machine Using Artificial Neural Network", ISRM International Symposium-6th Asian Rock Mechanics Symposium, India.
[8]. Hedayatzadeh, M.; Shahriar, K.; Hamidi, J. K.; 2010; "An Artificial Neural Network Model to Predict the Performance of Hard Rock TBM", ISRM International Symposium-6th Asian Rock Mechanics Symposium, India.
[9] اخضری, ا. ; محمدیزاده, م.; آذر 1391; "معرفی روش PCANN", سی یکمین گردهمایی علوم زمین.
[10] مهندسین مشاور ساحل; 1386; مطالعات زمین شناسی مهندسی مسیر تونل, گزارش.2026.
[11]. Khademi Hamidi, J.; Shahriar, K.; Rezai, B. ; Rostami, J.; 2010; "Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system", Tunnelling and Underground Space Technology, 25, 333-345.
[12] منهاج, م. ب.; 1391, مبانی شبکه های عصبی، انتشارات دانشگاه امیر کبیر.
[13]. Mehrotra, K.; Mohan, C. K.; Ranka, S.; 1997, Elements of artificial neural networks: the MIT Press.
[14] افتخاری, م.; باغبانان, ع. ; باقرپور, ر.; 1391; "بررسی تاثیر پارامترهای اجرایی ماشین TBM بر نرخ نفوذ آن با استفاده از روش شبکه‌های عصبی مصنوعی- مطالعه موردی تونل بلند زاگرس", نشریه‌ی علمی-پژوهشی مهندسی تونل و فضاهای زیرزمینی, 1, 29-42.
[15]. Khanna, T.; 1990; Foundations of neural networks, Reading: Addison Wesley, 1990, 1.
[16]. Meulenkamp, F.; Grima, M. A.; 1999; "Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness", International Journal of rock mechanics and mining sciences, 36, 29-39.
[17] حسنی پاک, ع. ; شرف الدین, م. تحلیل داده های اکتشافی، انتشارات دانشگاه تهران, 1384.
[18] یاوری, م. ; مهدوری, س.; 1384; "پیش بینی نرخ نفوذ ماشین های تونل بری با استفاده از شبکه عصبی", نشریه دانشکده فنی, 40, 115-121.