تعیین عیار حد بهینه معادن روباز با هدف بیشینه کردن ارزش خالص فعلی با استفاده از الگوریتم رقابت استعماری

نوع مقاله: پژوهشی

نویسندگان

1 دانشکده مـهندسی معدن، نفت و ژئوفیزیک، دانـشگاه صنعتی شاهرود

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه آزاد اسلامی واحد شاهرود

چکیده

هدف اساسی برنامه‌ریزی تولید بلند مدت، اتخاذ تدابیری جهت اجرای عیارهای حد استخراجی و برنامه‌ریزی تولید کوتاه مدت است. یکی از مهمترین پارامترها در طراحی معادن روباز، تعیین عیار حد بهینه است. عیار حد بهینه منجر به بیشینه نمودن سود و یا بیشینه نمودن ارزش خالص فعلی می‌شود. بیشنه نمودن ارزش خالص فعلی که در چند دهه اخیر مورد توجه قرار گرفته است، یک مساله برنامه‌ریزی غیرخطی است. لین برای تعیین عیار حد بهینه با احتساب عواملی همچون ظرفیت‌های هر یک از قسمت‌های مختلف معدن (ظرفیت‌های استخراج از معدن، کارخانه تغلیظ، کارخانه تصفیه و بازار)، ارزش زمانی پول و توزیع عیار کانسار، الگوریتم خود را  ارایه  داده است. روند محاسبه عیار حد با استفاده از الگوریتم لین بسیار طولانی است. در این مقاله به منظور تعیین عیار حد بهینه از روش الگوریتم بهینه‌سازی رقابت استعماری، که در رده الگوریتم‌های هوشمند قرار می‌گیرد، استفاده شده است. نتایج نشان می‌دهد که تعیین عیار حد با استفاده از این روش از دقت وسرعت بالایی برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of optimum cutoff grades to maximize net present value by using Imperialism Competitive Algorithm (ICA)

نویسندگان [English]

  • Ramin Rafiee 1
  • Mohammad Ataei 1
  • Azita Azarfar 2
1 Dept. of Mining, Petroleum and Geo-physics, Shahrood University of Technology
2 electrical engineering faculty of Islamic Azad University, Shahrood branch
چکیده [English]

Summary
Mining production planning is a very vital subject of mine design process. One of the most important issues in mine production planning is the cutoff grade which is simply a grade used to distinguish between ore and waste. Waste materials may either be left in place or sent to waste dump. Ore is sent to the mill for further processing. Lower cutoff grade causes higher amounts of ore to be processed and subsequently lower amounts of waste materials to be dumped resulted in fluctuations in the cash flow of a mining project. The main goal of the long-term production planning is to determine strategies to implement the cutoff grade and short-term production planning. One of the most important aspects of mine design is to determine the optimum cutoff grade. The optimum cutoff grade leads to maximize the profit or the Net Present Value (NPV). Maximizing of NPV is a non-liner programing problem that has been considered in the recent decades. The main factors involved in the Lane algorithm are the capacities of each part of the mine (e.g. extraction capacity of mine, refinery plant, and market), time value of currency and distribution grad of deposit. Since Lane algorithm calculation steps are very time consuming, In this study a novel technique namely Imperialism Competitive Algorithm (ICA) is used to determine the optimum cut-off grade. The results show that optimum cut-off grade obtained by ICA is more accurate and faster than other simulation algorithms. In this paper a novel optimization algorithm based on imperialist competitive algorithm (ICA) is used to determine the optimum cut-off grade in the open-pit mines.
 
Introduction
One of the important aspects of open-pit mine design is determination of cutoff grade, by definition cutoff grade is the grade at which the mineral reserve ca no longer be mined and processed at profit. A cutoff grade is used to assign the destination of material exploited from the mine. This destinations are: (1) to mill, (2) to the waste dump and (3) to the stockpiles. In this paper, determining the optimal cutoff grade of ore to maximize the NPV due to mining limitations, concentration and refining is described by using ICA algorithm.
 
Methodology and Approaches
The ICA algorithm starts with an initial population. Each population in ICA is called country. Countries are divided in two groups: imperialists and colonies. In this algorithm the more powerful imperialist, have the more colonies. When the competition starts, imperialists attempt to achieve more colonies and the colonies start to move toward their imperialists. So during the competition the powerful imperialists will be improved and the weak ones will be collapsed. At the end just one imperialist will remain. In this stage the position of imperialist and its colonies will be the same. In this paper the cutoff grade of hypothetical deposit is calculated using ICA algorithm. This algorithm has 40 country, 6 imperialist and 34 colony. Finally the results is validated by dichotomous method.
 
Results and Conclusions
One of the important parameters of open-pit mine design is determination of cutoff grade. In this paper imperialist competitive algorithm is used to optimize the cutoff grade. Since the roulette wheel mechanism is not used In the ICA algorithm and only a probability density function (PDF) is needed to reach the answer, the ICA algorithm converges faster and better to the optimum point compare with other algorithms.

کلیدواژه‌ها [English]

  • Cut-off grade
  • optimum cut-off grade
  • Optimization
  • NPV
  • Imperialism Competitive Algorithm
[1]. ustrulid, W. A., Kuchta, M., & Martin, R. K. (2013). Open Pit Mine Planning and Design, Two Volume Set & CD-ROM Pack: CRC Press.
[2]. Taylor, H.K., (1985) “Cutoff garde- some further reflection”, Trans. Inst. Min. Metall (Sect. A: Min. industry), A204-A216.
[3]. Bascetin, A. & Nieto, A., (2007) "Determination of optimal cut-off grade policy to optimize NPV using a new approach with optimization factor", Joyrnal South African institute of mining and metallurgy, 107, 87.
[4]. Minnitt, R., (2004), "Cut-off grade determination for the maximum value of a small Wits-type gold mining operation", Joyrnal South African institute of mining and metallurgy, 104, 277-284.
[5]. Osanloo, M. & Ataei, M., (2003), "Using equivalent grade factors to find the optimum cut-off grades of multiple metal deposits". Minerals Engineering, 16, 771-776.
[6]. Osanloo, M., Rashidinejad, F. & Reza, B., (2008), "Incorporating environmental issues into optimum cut-off grades modeling at porphyry copper deposits", Resources Policy, 33, 222-229.
[7]. Wang, Q., Deng, J., Zhao, J., Liu, H., Wan, L. & Yang, L, (2010), "Tonnage-cutoff model and average grade-cutoff model for a single ore deposit", Ore Geology Reviews, 38, 113-120.
[8]. Li, S. & Yang, C., (2012) "an optimum algorithm for cut-off grade calculation using multistage stochastic programming". Journal of Theoretical & Applied Information Technology, 45
[9]. Barid B.K. and Satchwell P.C., (2001) “Application of economic parameters and cutoffs during and after pit optimization”, Mining Engineering.
[10]. Tatiya R.R., (1996), “Cutoff-grade decisions in relation to an Indian copper-mining complex”, Trans. Inst. Min. Metall., Section A, Vol. 81, pp. A 127-131.
[11]. Lane K.F., (1964), “Choosing the optimum cut-off grade”, Colorado School of Mines Quarterly, Vol. 59, pp. 811-829.
[12]. Lane K.F., (1979), “Commercial computer aspects of choosing cutoff grades” 16th international symposium Application of computer and Mathematics in the Mineral Industries, Chapter 27, pp. 280-285.
[13]. Lane K.F., (1988), “The economic definition of ore –cutoff grade in theory and practice”, mining journal books limited, London.
[14]. Atashpaz-Gargari E. & Lucas C., (2007), "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition.  Evolutionary Computation", CEC 2007. IEEE Congress on, IEEE, 4661-4667.
[15]. Kaveh, A., & Talatahari, S. (2010). Optimum design of skeletal structures using imperialist competitive algorithm. Computers & Structures, 88(21), 1220-1229.
[16]. Niknam, T., Fard, E. T., Pourjafarian, N., & Rousta, A. (2011). An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering. Engineering Applications of Artificial Intelligence, 24(2), 306-317.
[17]. Lucas, C., Nasiri-Gheidari, Z., & Tootoonchian, F. (2010). Application of an imperialist competitive algorithm to the design of a linear induction motor. Energy conversion and management, 51(7), 1407-1411.
[18]. Rajabioun, R., Atashpaz-Gargari, E., & Lucas, C. (2008). Colonial competitive algorithm as a tool for Nash equilibrium point achievement. In Computational science and its applications–iccsa 2008 (pp. 680-695). Springer Berlin Heidelberg.
[20]. Gargari, E. A., Hashemzadeh, F., rajabioun, R. & Lucas, C., (2008), "Colonial competitive algorithm: a novel approach for PID controller design in MIMO distillation column process". International Journal of Intelligent Computing and Cybernetics, 337-355.
[21]. Nourmohammadi, A., Zandieh, M. & Tavakkoii-moghaddam R, (2013), "An imperialist competitive algorithm for multi-objective U-type assembly line design". Journal of Computational Science, 4, pp 393-400.
[22]. Enayatifar, R., Sadaei, H. J., Abdullah, A. H. & Gangi, A., (2013), "Imperialist competitive algorithm combined with refined high-order weighted fuzzy time series (RHWFTS–ICA) for short term load forecasting". Energy Conversion and Management, 76, 1104-1116.
[23]. Khabbazi, A., Atashpaz-Gargari, E., & Lucas, C. (2009). Imperialist competitive algorithm for minimum bit error rate beamforming. International Journal of Bio-Inspired Computation, 1(1-2), 125-133.
[24]. Rardin, R. L., (1998), "Optimization in operations research", Prentice Hall New Jersey
[25]. Atashpaz-Gargari E., (2009), "Imperialist Competitive Algorithm development and it is applications", M.S. Thesis, University of Tehran (in Persian).