تحلیل دینامیکی دیوار دیافراگمی مهار بندی شده

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه یزد

10.29252/anm.8.15.83

چکیده

به منظور پایدار‎سازی گود و جلوگیری از ریزش ترانشه و تبعات احتمالی ناشی از آن، سازه نگهبان مناسب با کاربری موقت یا دائم طراحی می‎گردد. در این مقاله یکی از روش‎های پایدارسازی گودبرداری‎های عمیق، دیواردیافراگمی مورد بررسی قرار گرفته است. دیواردیافراگمی هم به صورت طره‌ای و هم همراه با مهار روش موثری برای مقابله با نیروهای استاتیکی و دینامیکی وتامین پایداری گودهای عمیق می‎باشد. در این مقاله دیوار دیافراگمی دارای یک ردیف مهار و با در نظر گرفتن نیروی زلزله‎ مورد مطالعه قرار گرفته است. با استفاده از برنامه اجزاء محدود PLAXIS بیشینه جابجایی‎های دیوار و تغییر شکل آن، همچنین بیشینه لنگر خمشی دیوار دیافراگمی محاسبه شده است. پشت دیوار در سمت توده خاک و پایین مدل از مرزهای جاذب برای جلوگیری از انعکاس امواج زلزله استفاده شده است. برای اعمال نیروی دینامیکی شتاب نگاشت‌های زلزله طبس، بم و رودبار مورد استفاده قرار گرفته است. دراین تحقیق مشخص شد که تغییرشکل و کرنش در زلزله تحت تاثیر مشخصات زلزله است. بیشینه جابجایی جانبی دینامیکی دیوار در قسمت بالای دیوار بوده است. با افزایش سختی مهار بیشینه جابجایی جانبی بالای دیوار کاهش می‌یابد. بررسی مطالعات پارامتریک نشان دادکه با افزایش5/1، 3 و 4 برابر مدول الاستیسیته خاک میزان کاهش تغییرات بیشینه جابجایی افقی در بالای دیوار هم به ترتیب حدود 25، 53 و 76 درصد کاهش داشته است. همچنین افزایش 2، 3 و 4 برابر چسبندگی خاک به ترتیب کاهش حدود 7، 11 و 20 درصدی لنگرخمشی دیوار را به دنبال داشته است. در مقایسه مقادیر دینامیکی نسبت به استاتیکی میزان جابجایی بیش از دو برابر و میزان لنگر خمشی هم حدودا 3/1 برابر شده است. بنابراین در طراحی دیوار دیافراگمی در مناطق زلزله خیز حالت بارگذاری زلزله می‌تواند تعیین کننده باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic Analysis of Anchored Diaphragm Walls

نویسندگان [English]

  • Kazem Barkhordari
  • Mahboubeh Javaheri
Dept. of Civil Engineering, Yazd University
چکیده [English]

Summary
In this paper, the behavior of diaphragm walls with and without anchor have been studied. In addition to static loads, the walls were subjected to seismic load due to earthquake, using finite element program, PLAXIS 2D. Maximum displacement and bending moment of the wall were compared in different cases.
 
Introduction
Deep excavations in urban areas require not only the stability of retained soil, but also special attentions due to the nearby existing buildings. They must be designed in such a way that the requirements for both ultimate and serviceability limit state for supporting system and neighboring structures are satisfied. Anchored diaphragm walls are one of the safest lateral supports, which help in overall stability of the excavated areas. Diaphragm walls represent in general a considerably more complex problem than gravity or cantilever walls.
 
 Methodology and Approaches
The wall displacement, maximum bending moment and anchor extreme force were calculated using a dynamic PLAXIS finite element program. The soil was considered as elasto-plastic material, using Mohr–Coulomb constitutive model.  The wall and the anchor were considered to behave elastically. Considering the dynamic applied load, absorbent boundaries were assumed to prevent dynamic wave reflection.  Three different historical strong motions namely, Tabas, Bam and Roodbar were applied to the wall. The following outputs were obtained for different excavation geometry and mechanical properties for soil.
 
Results and Conclusions
general results can be drawn as following: 1-Change in the soil stiffness (modulus of elasticity and cohesion) from soft to stiff has caused the maximum wall displacement and bending moment to increase by 76% and 20%, respectively. 2- Under dynamic load, the maximum lateral displacement of the wall is at its maximum value, while the static wall displacement is maximum at about one third the wall height measured from its toe. 3-Peak ground acceleration has direct effect on maximum wall displacement and bending moment, while earthquake frequency has inversely changed these output parameters. Based on the obtained results 30% increase in earthquake acceleration has caused the maximum wall displacement increase by 15%. 4- The maximum displacement and bending moments increased noticeably under earthquake load. Therefore, for diaphragm walls in earthquake prone area, dynamic case should be considered in design. Albeit, building codes, accept higher displacement and bending moments under exceptional loadings.

کلیدواژه‌ها [English]

  • Deep excavation
  • Diaphragm wall
  • Numerical Analysis
  • Earthquake dynamic load
  • Inclined anchor
  • Finite element
  • Time history
[1]           Gazetas, G. Psarropoulos, P. N., Anastasopoulos, I., Gerolymos, N. (2004). “Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation”, Soil Dynamics and Earthquake Engineering 24:537–550.
[2]           Mir Mohammad hosieni, S.M. (2008). “The Principles of Soil Dynamicˮ, International Institute of Earthquake Engineering and Seismology. (In Persian).
[3]           Ostadan, F. (2008). “Seismic Soil Pressure for Building Walls-An Updated Approachˮ, Bechtel Technology Journal, Volume 1, Number 1.
[4]           Nogami, T. (1993). “Waterfront Sheet Pile Walls Subjected to Earthquake Shaking: Analysis methodˮ, Scripps institution of Oceanography University of California at SanDiego. La Jolla. CA 92093.
[5]           Zeng, X. and Steedman, R.S. (1993). “On the Behavior of Quay Walls in Earthquakesˮ, Geotechnique. 43(3), 417–431.
[6]           Fanchin, P. and Pinto, P.E. (2008). “Analysis of Diaphragm-type Bridge Abutments and After Seismic Upgradingˮ, 1st US-Italy seismic bridge workshop.
[7]           Gol Pazir, I. Akhlaghi, T. (2008). “The Effect of Various Parameters on The Behavior of Cantilever Diaphragm Wall Using The Finite Element Method and Limit Equilibriumˮ. Fifth National Congress of Civil Engineering. Ferdowsi University. Mashhad. (In Persian).
[8]           Choudhury, D. Sitharam, T. G. Subba Rao, K. S. (2004). “Seismic Design of Earth-Retaining Structures and Foundationsˮ. Current Science. Vol. 87. No. 10. pp. 1417-1425.
[9]           Kramer, SL. (1996). “Geotechnical Earthquake Engineeringˮ. Prentice Hall, Upper Saddle River. NJ. 1996.
[10]         Kamal Mohamed Hafez Ismail Ibrahim., Tarek Esmat Ibrahim. (2013). “Effect of historical earthquakes on pre-stressed anchortie back diaphragm wall and on near-by building”, HBRC Journal 9, 60–67.
[11]         Ou, C. Y. (2006). “Deep Excavation, Theory and Practiceˮ, Taylor & Francis, Nethelands.
[12]         Thomas, D. R.; Jr, P. E. (2006). “Diaphragm Wallˮ, Central PA Geotechnical Conference, Hershey, Pennsylvania.
[13]         Ali Elahi, H. (2011). “In-situ Concrete Diaphragm Walls Designed on The Basis of Their Seismic Performanceˮ. Fourth International Conference on Soil Mechanics and Geotechnical Engineering Iran. Iranian Geotechnical Society, Tehran. (In Persian).
[14]         Gill-Martin, L. M., Hernandez, E., Shin, M and Aschheim, M. (2012). “Developments in Excavation Bracing Systemsˮ, Journal of tunnelling and underground space technology, Elsevier. 31:107–116.
[15]         Plaxis 3D Foundation Vol1.6 User Manual: (2004).  Delft University of Technology & Plaxis BV. Delft. Netherland.
[16]         Sabatini, P., Pass, J. D.; Bachus, R. C. (1999). “Ground Anchors and Anchored Systemsˮ,GeoSyntec Consultants 1100 Lake Hearn Drive Atlanta, Georgia.Resources Center Directors Division Administrators Federal Lands Highway Division Engineers. Washington D.C. 20590.
[17]         Kamal Mohamed Hafez Ismail Ibrahim, Tarek Esmat Ibrahim. (2013). “Effect of Historical Earthquakes on Pre-Stressed Anchor Tie Back Diaphragm Wall and on Near-by Building ˮ. Housing and Building National Research Center. Production and Hosting by Elsevier B.V. All Rights Reserved.
[18]         Permanent Committee for Revising the Iranian Code of Practice for Sismic Resistant Design of Buildings. (2014). “Iranian Code of Practice for Sismic Resistant Design of Buildings Standard 2800, 4th Editionˮ. Road, Housing and Urban Development Research Center, Tehran, Iran. (In Persian).