تعیین ویژگی‌های ژئوشیمیایی و ارزیابی ژنتیکی میعانات گازی با استفاده از مطالعات بایومارکری و آنالیزهای شیمی سنجی در حوضه خلیج فارس، ایران

نوع مقاله: پژوهشی

نویسندگان

1 پردیس علوم و فناوری‌های نوین، دانشکده مهندسی نفت، دانشگاه سمنان

2 دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر تهران

10.29252/anm.2019.9003.1313

چکیده

در مطالعه حاضر به بررسی ویژگی‌های ژئوشیمیایی چهارده نمونه میعانات گازی در بخش مرکزی خلیج فارس و نواحی ساحلی این بخش پرداخته شده و همچنین با استفاده از آنالیز شیمی سنجی جهت دسته‌بندی و اختصاص حدود اطمینان، برای تعیین ژنتیکی خانواده‌های کاندنسیت در این حوضه استفاده شده ‌است. نمونه‌های مورد مطالعه از مخازن دالان و کنگان (پرمین پسین - تریاس) مربوط به شش میدان گازی (میعانات گازی) که مهم‌ترین مخازن گازی ایران را تشکیل می‌دهند، جمع‌آوری شده اند. به منظور تخمین میزان بلوغ حرارتی نمونه‌ها و همچنین تعیین محیط رسوب گذاری سنگ منشا و نوع لیتولوژی آن از پارامترهای بایومارکری به دست آمده از نتایج کروماتوگرافی گازی- طیف‌سنجی جرمی استفاده می‌شود. روش آماری مورد استفاده خوشه‌بندی سلسله مراتبی متراکم است که نشان می‌دهد گازهای مورد مطالعه در سه گروه ژنتیکی اصلی قرار دارند. در محدوده مورد بررسی از لحاظ بلوغ حرارتی یک روند کلی مشاهده می‌شود، به گونه‌ای که بلوغ از سمت غرب به شرق خلیج فارس و همچنین از فارس ساحلی به سمت خلیج فارس افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Geochemical Properties and Genetic Types of Gas Condensates Using Biomarker Studies and Chemometric Analysis in Persian Gulf Basin, Iran

نویسندگان [English]

  • Mohammad Hossein Saberi 1
  • mohammad javad seydi 1
  • Ahmad Reza Rabbani 2
1 Science and New Technology Campus, Petroleum Engineering Department, Semnan University, Iran
2 Dept. of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Summary
Comprehensive geochemical study shows the genetic relationship between 14 samples of gas condensates from the Persian Gulf. In this study, the samples were examined merely in terms of maturity, which led to a general trend towards maturation of the region. In this process, maturation increases from west to east of the Persian Gulf and also from the coastal Fars to the Persian Gulf and then to the Arabian section.
 
Introduction
Using collected data including data biomarkers derived from gas chromatography-mass spectrometry analysis. It provides relevant diagrams for maturity and source rock sedimentation environment as well as statistical analysis of existing samples for all fields. Matching the interpretations of these two to the desired results, the purpose of this Research has been achieved.
 
Methodology and Approaches
The Samples were collected from Dalan and Kangan reservoirs (Late Permian – Triassic) from 6 gas fields (gas condensate), Which constitute the most important Iranian gas/gas condensate reservoirs. In this study, in order to estimate the maturity of the samples (for the purpose of determining the thermal maturity of gas condensates and determining their range of placement in the maturity chart), as well as determining the sedimentary environment of the source rock and type of lithology, the available biomarker parameters obtained from the results gas chromatography - mass spectrometry (GC-MS) were used. The statistical methods used are agglomerative hierarchical clustering (AHC) and principal component analysis (PCA), which show that the studied gases are in three main genetic groups.
 
Results and Conclusions
According to the results of this study, the origin of hydrocarbons in the region of marine is organic matter with some organic matter of continental origin. Their maturity range is in the late stages of petroleum production and early gas window. This gas condensate is derived from the clastic lithological sources that have been generated under reducing environmental conditions and from type II and III kerogens. Three main groups of gas condensate from statistical analysis and and correlation to the source rock were identified using biomarker parameters related to maturity and sedimentation environment. The maturity from the Golshan field to the Salman field (from west to east of the Persian Gulf) increases and the sedimentary environment is different in the southern Persian Gulf Salman and Golshan fields (marine carbonate) from its northern fields such as Khayyam, Tabnak and Madar (marine shale).

کلیدواژه‌ها [English]

  • Biomarker
  • Genetic linkage
  • Chemometry analysis
  • Thermal maturation
  • Persian Gulf

حوضه خلیج فارس یکی از غنی‌ترین مناطق حاوی هیدروکربنی جهان است. این حوضه دارای ۵۷ درصد (۷۱۵ میلیارد بشکه) از ذخایر نفت خام جهان و ذخایر قابل توجه گاز طبیعی (۲۴۶۲ تریلیون فوت مکعب)، شامل ۴۵ درصد از ذخایر گاز ثابت شده جهان است]1[. تاکنون مطالعات گسترده‌ای در خصوص ویژگی‌های ژئوشیمیایی هیدروکربورهای میادین خلیج فارس انجام شده است. از جمله، ربانی و همکاران (2014) اقدام به مطالعه ژئوشیمیایی 33 نمونه نفتی از گستره خلیج فارس نموده‌اند. بر اساس این پژوهش با استفاده از روش خوشه‌بندی سلسله مراتبی و روش آماری آنالیز اجزای اصلی بر روی داده‌های ژئوشیمیایی (شامل اطلاعات ترکیبات اشباع، ایزوپرنوئیدها و بایمارکرهای استران و هوپان) چهار گروه ژنتیکی در محدوده خلیج فارس شناسایی گردید]1[. مشهدی و ربانی (2015) نفت‌های سیستم هیدروکربنی کرتاسه در خلیج فارس را مورد بررسی قرار داده‌اند، در این مطالعه دو گروه ژنتیگی بر اساس پارامترهای ژئوشیمیایی تشخیص داده شد]2[.

مطالعات انجام شده در خصوص بررسی ژئوشیمیایی در ناحیه خلیج فارس، عمدتا به مخازن نفتی و سیستم هیدروکربنی ژوراسیک، کرتاسه و ترشیری مربوط بوده و تنها تعداد معدودی مطالعه در محدوده یک میدان بر روی سیستم نفتی پالئوزوئیک انجام شده است. از این رو در این پژوهش با استفاده از آنالیز ژئوشیمیایی با وضوح بالا و استفاده از روش آماری خوشه‌بندی سلسله مراتبی متراکم، برای ارزیابی ژنتیکی میان ۱۴ نمونه میعانات گازی جمع‌آوری شده از مخازن دالان و کنگان (پرمین و تریاس) مربوط به ۶ میدان در گستره خلیج فارس و نواحی فارس ساحلی پرداخته خواهد شد. با استفاده از مطالعات ژئوشیمیایی، سن سنگ منشاء احتمالی، بررسی محیط دیرینه و بلوغ حرارتی نسبی آنها تعیین شده و در نهایت با توجه به تفاسیر انجام شده بر روی بایومارکرهای موجود می‌توان به یک روند مشخص از افزایش نحوه بلوغ و همچنین ایجاد یک تمایز معین از نظر محیط رسوب‌گذاری سنگ منشا در ناحیه دست یافت.

[1]           A. R. Rabbani, M. J. Kotarba, A. R. Baniasad, E. Hosseiny, D. Wieclaw, (2014)"Geochemical characteristics and genetic types of the crude oils from the Iranian sector of the Persian Gulf" Organic Geochemistry, 70, 29–43.
[2]           Z. S. Mashhadi, A. R. Rabbani,(2015)" Organic geochemistry of crude oils and Cretaceous source rocks in the Iranian sector of the Persian Gulf: An oil–oil and oil–source rock correlation study", International Journal of Coal Geology, 146, 118–144.
[3]           A. O. W. M. G. Ayres , M. Bilal , R. W. Jones , L. W. Slentz , M. Tartir, (1982) “Hydrocarbon Habitat in Main Producing Areas, Saudi Arabia,” Am. Assoc. Pet. Geol. Bull., vol. 66, no. 1, pp. 1–9.
[4]           M. A. Ziegler, (2001) “Late Permian to Holocene Paleofacies Evolution of the Arabian Plate and its Hydrocarbon Occurrences,” AAPG.
[5]           A. I. Konyuhov and B. Maleki, (2006) “The Persian Gulf Basin: Geological history, sedimentary formations, and petroleum potential,” Lithol. Miner. Resour., vol. 41, no. 4, pp. 344–361, Jul.
[6]           M. L. Bordenave, (2002) “Gas Prospective Areas in the Zagros Domain of Iran and in the Gulf Iranian Waters (PDF Download Available),” AAPG Annu. Meet. , pp. 10–13.
[7]           A. R. Rabbani, (2013), Petroleum geology and geochemistry of the Persian Gulf. (in Persian).
[8]           M. L. Falcon, (1967)“ The geology of the northeast margin of the Arabian basement Shield,” Br. Assoc. Adv. Sci., vol. 24, pp. 31–42.
[9]           A. M. A. S. A. A.-H. K. de G. A. A. A. N. G. Konert and H. J. Droste, (2001) “AAPG Memoir 74, Chapter 24: Paleozoic Stratigraphy and Hydrocarbon Habitat of the Arabian Plate,” pp. 483–515.
[10]         J. V. Harrison, (1930) “The Geology of some Salt-Plugs in Laristan, Southern Persia,” Q. J. Geol. Soc., vol. 86, no. 1–4.
[11]         Peter Kent, (1970) “The Salt Plugs of the Persian Gulf Region - Peter Kent - Google Books,” Leicester Lit. Philos. Soc., vol. 64.
[12]         J. Letouzey and S. Sherkati, (2004)“ Salt Movement, Tectonic Events, and Structural Style in the Central Zagros Fold and Thrust Belt (Iran),” in Salt Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications, and Case Studies for the 21st Century: 24th Annual, SOCIETY OF ECONOMIC PALEONTOLOGISTS AND MINERALOGISTS, pp. 753–778.
[13]         F. D. Mango, (1991) “The stability of hydrocarbons under the time|[ndash]|temperature conditions of petroleum genesis,” , Publ. online 11 July 1991; | doi10.1038/352146a0, vol. 352, no. 6331, p. 146.
[14]         R. Karmer, (1998) Chemometric Techniques for Quantitative Analysis - Richard Kramer - Google Books.
[15]         B. P. Tissot and D. H. Welte, (1984) “Petroleum Formation and Occurrence, A New Approach to Oil and Gas Exploration, Second Edition,” Springer-Verlag Berlin Heidelb. New York 1978, p. 720, 1984.
[16]         K. E. Peters, J. M. Moldowan, A. R. Driscole, and G. J. Demaison, (1989) “Origin of Meatrice oil by cosourcing from Devonian and MIddle Jurassic source rocks, Innter Moray Firth, UK,” Am. Assoc. Pet. Geol. Bull., vol. 73, no. 4, pp. 454–47.
[17]         G. Ourisson, P. Albrecht, and M. Rohmer, (1982)“ Predictive microbial biochemistry  from molecular fossils to procaryotic membranes,” Trends Biochem. Sci., vol. 7, no. 7, pp. 236–239.
[18]         J. H. Ward, (1963)“ Hierarchical Grouping to Optimize an Objective Function,” J. Am. Stat. Assoc., vol. 58, no. 301, pp. 236–244, Mar.
[19]         M. H. Saberi and A. R. Rabbani, (2015) “Origin of natural gases in the Permo-Triassic reservoirs of the Coastal Fars and Iranian sector of the Persian Gulf,” J. Nat. Gas Sci. Eng., vol. 26, pp. 558–569.