تخمین عیار در کانسارهای با تغییرات موضعی ناهمسانگردی به روش کولونی مورچگان، مطالعه موردی:کانسار مس پورفیری میدوک

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

10.29252/anm.2019.12048.1392

چکیده

ناهمسانگردی یا ناپیوستگی کانسار در جهت‌های مختلف به دلیل تغییرات عیار یا ساختار ماده معدنی پدید می‌آید. کنترل کننده‌های زمین‌ساختی یا تغییرات شیمیایی در حین تشکیل ماده معدنی می‌توانند سبب ناهمسانگردی شوند. این ویژگی به صورت سه‌بُعدی در کانسارها با یک بیضوی به قطرهای در راستای پیوستگی و با مقادیر متناسب با نسبت ناهمسانگردی تعریف می‌شود. در طبیعت اما، بسیاری از کانسارها تحت تاثیر فرآیندهایی مثل چین‌خوردگی، گسل، تغییرات زایشی و دگرگونی دچار تغییرات موضعی ناهمسانگردی (LVA) می‌شوند و نمی‌توان آنها را با یک بیضوی ناهمسانگردی کلی مدل کرد. در روش مدلسازی متغیر دارای خاصیت LVA، پارامترهای ناهمسانگردی برای هر سلول شبکه تخمین محاسبه شده و با تبدیل فضا به یک فضای همسانگرد، از فواصل جدید اقلیدسی در واریوگرافی و سپس کریجینگ معمولی (OK) استفاده شده است. این روش که کریجینگ LVA (OKLVA) نام گرفته، در صورت وجود اطلاعات ثانویه، می‌تواند با دقت بیشتری نسبت به کریجینگ سنتی، نقاط نامعلوم را تخمین بزند. در این پژوهش از الگوریتم کولونی مورچگان استفاده شده تا با هدایت هدفمند مورچه‌ها به کمک میدان LVA در مسیرهای پیوسته‌تر عیاری و تبدیل هر مورچه به یک پنجره میانگین متحرک، بتواند عیار را در مسیرهای ناهمسانگرد اصلاح کند. این کاربرد جدیدی از یک الگوریتم فرا ابتکاری است که تاکنون در حل مسائل بهینه‌سازی به کار گرفته می‌شده است. این روش (ACLVA) از ابتدا تا انتها در نرم‌افزار MATLAB پیاده‌سازی شده و سپس روی 12955 نمونه کامپوزیت شده مغزه‌های حفاری معدن مس میدوک به عنوان نمونه مطالعاتی امتحان شد. نتایج با روش‌های OK و OK-LVA مقایسه شد. برای اعتبارسنجی هر سه روش از داده‌های چال‌های آتشباری استفاده شد که نشان داد روش تخمین با ACLVA تقریبا 3 درصد بهتر از OK و 4 درصد بهتر از OKLVA در تخمین عیار عمل کرده است. با این وجود، آنچه که مسلم است در ساختارهای با میدان موضعی پیچیده‌تر، جواب بهتر و قابل قبول‌تری با این روش به دست خواهد آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Grade Estimation in Deposits with Locally Varying Anisotropy using Ant Colony Algorithm: Case Study, Miduk Porphyry Copper Deposit

نویسندگان [English]

  • Hamid Moeini
  • Farhad Mohammad Torab
  • Amin Hossein Morshedy
Dept. of Mining and Metallurgy, Yazd University, Yazd, Iran
چکیده [English]

Summary
Anisotropy of a deposit is due to its directional variations of grade or structure. Locally varying anisotropy (LVA) is the specific case of anisotropy in some structurally-controlled deposits. In this research, using ant colony application in geochemical anomaly detection and LVA field of the study area, an algorithm (ACLVA) has been developed to smartly direct the ants into the more continuous paths and ants, meanwhile act as moving average agents over their routes. Ordinary kriging (OK), OKLVA, and ACLVA were applied on borehole samples of Miduk copper deposit as the case study, and estimations were validated with blast hole samples. The estimations were improved with ACLVA. A newly-developed hybrid ant colony with an LVA algorithm (ACLVA) is presented that can modify an initial estimation of the data according to the LVA field. ACLVA is compared with recently-developed OKLVA and OK on borehole samples of a copper deposit. The estimations were validated with blast hole samples.
 
Introduction
Neural networks (ANN) have recently been used to estimate grade. They were able to present acceptable models of the resources. Many attempts have been made to incorporate the LVA feature of deposits into geostatistical models. In this research, a new hybrid AC-LVA algorithm has been developed that can produce a more representative map of the continuities.
 
MethodologyandApproaches
Artificial ants are randomly put in the grid cells and while searching for high values according to the LVA field, act as moving average agents on their routes. To decrease the randomness effect of AC, the program is repeated. The ants’ stability termination condition is. Better initializing would lead to a better Jensen-Shannon (JS) value.
 
ResultsandConclusions
The outputs of OK, OKLVA, and ACLVA were validated with blast hole samples. The results showed that ACLVA performed 4% better than OKLVA and 3% better than OK. The initial number of ants can be set optimally. Other parameters should be changed based on the best JS value. The results would be significant if the deposit has more complex LVA.

کلیدواژه‌ها [English]

  • Kriging
  • Local Anisotropy
  • Ant Colony
  • Miduk Deposit

مطالعات مربوط به مدلسازی کانسار یا تخمین ذخیره به کمک الگوریتم‌های هوش مصنوعی بیشتر مربوط به روش­های شبکه عصبی مصنوعی (ANN) و شبکه­های تابع شعاع محور (RBF) است. شبکه‌های ANN ساختاری شبیه‌سازی شده از نورون­های عصبی مغز انسان است که لایه‌هایی از آنها می‌تواند با اصول ارتباطی ساده، مسائل پیچیده‌ای را رمزگشایی کند. شبکه­های RBF نیز در ساختار خود از توابعی کمک می­گیرند که به شعاع جستجوی اطراف نورون­ها وابسته­اند و با تغییراتی ساده در اطراف خود و تعامل با اجزاء دیگر شبکه، قادر به حل مسائلی از جنس درون­یابی هستند[1].

[1]           Wu X, Zhou Y, (1993). "Reserve estimation using neural network techniques",Comput Geosci 19,pp567–575
[2]           Kapageridis IK, (1999). "Application of artificial neural network systems to grade estimation from exploration data",University of Nottingham
[3]           Koike K, Matsuda S, Suzuki T, Ohmi M, (2002). "Neural network-based estimation of principal metal contents in the Hokuroku district, northern Japan, for exploring Kuroko-type deposits",Nat Resour Res 11,pp135–156
[4]           Koike K, Matsuda S, (2003). "Characterizing content distributions of impurities in a limestone mine using a feedforward neural network",Nat Resour Res 12,pp209–222
[5]           Samanta B, Bandopadhyay S, Ganguli R, Dutta S, (2005). "An application of Neural networks to gold grade estimation in Nome Placer Deposit",J South African Inst Mine, Met 105,pp237–246
[6]           A.A Morshedy HM, (2015). "A New Method of Generalized Radial Basis Function Network to Interpolate Regional Variable in Geosciences",J Geosci 24,pp107–116
[7]           Dutta S, Misra D, Ganguli R, Samanta B, Bandopadhyay S, (2006). "A hybrid ensemble model of kriging and neural network for ore grade estimation",Int J Surf Mining, Reclam Environ 20,pp33–45
[8]           Nezamolhosseini SA, Mojtahedzadeh SH, Gholamnejad J, (2017). "The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit",J Aalytical Numer Methods Min Eng 6,pp73–83
[9]           Kapageridis I, Denby B, (1998). "Ore grade estimation with modular neural network systems-a case study",Inf Technol Miner Ind Ed by GN Panagiotou TN Michalakopoulos AA Balkema Publ Rotterdam pp52
[10]         Kapageridis IK, (2002). "Artificial neural network technology in mining and environmental applications",11th Int. Symp. Mine Plan. Equip. Sel.
[11]         Samanta B, Bandopadhyay S, Ganguli R, (2006). "Comparative evaluation of neural network learning algorithms for ore grade estimation",Math Geol 38,pp175–197
[12]         Tahmasebi P, Hezarkhani A, (2011). "Application of a modular feedforward neural network for grade estimation",Nat Resour Res 20,pp25–32
[13]         Tahmasebi P, Hezarkhani A, (2012). "A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation",Comput Geosci 42,pp18–27
[14]         Deutsch C V, Lewis R, (1992). "Advances in the practical implementation of indicator geostatistics",In: Proc. 23rd Int. APCOM Symp. pp 133–148
[15]         Xu W, (1996). "Conditional curvilinear stochastic simulation using pixel-based algorithms",Math Geol 28,pp937–949
[16]         Stroet C, Snepvangers J, (2005). "Mapping curvilinear structures with local anisotropy kriging",Math Geol 37,pp635–649
[17]         Yao T, Calvert C, Jones T, Foreman L, Bishop G, (2007). "Conditioning geologic models to local continuity azimuth in spectral simulation",Math Geol 39,pp349–354
[18]         Mallet JLL, (2002). Geomodeling. Oxford University Press, Inc.
[19]         Sampson P, Guttorp P, (1992). "Nonparametric estimation of nonstationary spatial covariance structure",J Am Stat Assoc 87,pp108–119
[20]         Higdon D, (1998). "A process-convolution approach to modelling temperatures in the North Atlantic Ocean",Environ Ecol Stat 5,pp173–190
[21]         Nott DJ, Dunsmuir W, (2002). "Estimation of nonstationary spatial covariance structure",Biometrika 89,pp819–829
[22]         VerHoef JM, Peterson E, Theobald D, (2006). "Spatial statistical models that use flow and stream distance",Environ Ecol Stat 13,pp449–464
[23]         Little LS, Edwards D, Porter DE, (1997). "Kriging in estuaries: as the crow flies, or as the fish swims?",J Exp Mar Bio Ecol 213,pp1–11
[24]         Rathbun SL, (1998). "Spatial modeling in irregularly shaped regions: kriging estuaries",Environmetrics 9,pp109–129
[25]         Yuan LL, (2004). "Using spatial interpolation to estimate stressor levels in unsampled streams",Environ Monit Assess 94,pp23–38
[26]         Ganio LM, Torgersen CE, Gresswell RE, (2005). "A geostatistical approach for describing spatial pattern in stream networks",Front Ecol Environ 3,pp138–144
[27]         Renard D, Ruffo P, (1993). "Depth, dip and gradient",In: Geostatistics Tróia’92. Springer, pp 167–178
[28]         Mohammadhassanpour R, (2007). "Tools for multivariate modeling of permeability tensors and geometric parameters for unstructured grids",Masters Abstr. Int. 46:
[29]         Machuca-Mory DF, Rees H, Leuangthong O, (2013). "Grade Modeling with Local Anisotropy Angles: A Practical Point of View",
[30]         Hristopulos DT, (2002). "New anisotropic covariance models and estimation of anisotropic parameters based on the covariance tensor identity",Stoch Environ Res Risk Assess 16,pp43–62
[31]         Lillah M, Boisvert JB, (2015). "Inference of locally varying anisotropy fields from diverse data sources",Comput Geosci 82,pp170–182
[32]         Boisvert J, (2010). "Geostatistics with Locally Varying Anisotropy",University of Alberta
[33]         Boisvert JB, Deutsch C V, (2011). "Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances",Comput Geosci 37,pp495–510
[34]         Boisvert JB, Deutsch C V, (2011). "Modeling locally varying anisotropy of CO2 emissions in the United States",Stoch Environ Res Risk Assess 25,pp1077–1084
[35]         Martin R, Boisvert JB, (2017). "Iterative refinement of implicit boundary models for improved geological feature reproduction",Comput Geosci 109,pp1–15
[36]         Chen Y, An A, (2016). "Application of ant colony algorithm to geochemical anomaly detection",J Geochemical Explor 164,pp75–85
[37]         Clayton V. Deutsch AGJ, (1997). GSLIB: Geostatistical Software Library and User’s Guide (Applied Geostatistics Series). 2nd ed. Oxford University Press, USA
[38]         Dorigo M, Maniezzo V, Colorni A, (1996). "Ant system: optimization by a colony of cooperating agents",IEEE Trans Syst Man, Cybern Part B 26,pp29–41