بررسی آزمایشگاهی تأثیر مشبک‌کاری بر شکست هیدرولیکی، تحت شرایط تنش سه محوره با استفاده از مدلسازی فیزیکی

نوع مقاله: پژوهشی

نویسندگان

1 دانشکده مهندسی معدن، دانشگاه صنعتی سهند تبریز

2 دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان

10.29252/anm.2019.10976.1369

چکیده

شکست هیدرولیکی یکی از مهم‌ترین روش‌های تحریک مخازن نفت و گاز است که برای افزایش جریان سیال از مخازن با تراوایی پایین به سمت چاه استفاده می‌شود. عوامل مختلفی، همچون تنش‌های برجا، شکستگی‌های طبیعی سازند، رئولوژی سیال، خواص مکانیکی سازند، شدت جریان سیال تزریقی و مشبک‌کاری بر روی فشار شکست و چگونگی عملیات تأثیرگذار هستند. در این مطالعه، برای بررسی آزمایشگاهی شکست هیدرولیکی با در نظر گرفتن شرایط مخزن، دستگاه سه محوره‌ای با قابلیت اعمال تنش‌های اصلی، طراحی و ساخته شد. برای این منظور، تعداد 38 نمونه مصنوعی با اندازه 10 10 10 سانتی‌متر ساخته شد. سپس تأثیر پارامترهای مختلف مشبک‌کاری، همچون هندسه مشبک (شامل طول، قطر و شکل)، فاز مشبک‌کاری (در دو حالت چاه عمودی و افقی) و تنش افقی کمینه، مطالعه و بررسی شد. با رسم نمودار فشار- زمان، نحوه گسترش ریز ترک‌ها و شکستگی‌های متقاطع ارزیابی شد. نتایج نشان داد که با افزایش زاویه مشبک نسبت به تنش افقی بیشینه در چاه قائم، کاهش زاویه مشبک نسبت به تنش افقی بیشینه در چاه افقی و همچنین، افزایش تنش افقی کمینه، فشار شکست افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of the Perforation Effect on Hydraulic Fracturing Under Triaxial Stresses Using Physical Modeling

نویسندگان [English]

  • Mohammad Darbor 1
  • Hadi Shakeri 1
  • Lohrasb Faramarzi 2
1 Dept. of Mining, Sahand University of Technology, Tabriz, Iran
2 Dept. of Mining, Isfahan University of Technology, Iran
چکیده [English]

Summary
Hydraulic fracturing is one of the most important methods for the propagation of oil and gas reservoirs, which is used to increase the inflow to well bore in low permeability formations. Various parameters such as in-situ stress field, joints and natural fractures of the formation, the fluid rheology, the mechanical properties of the formation, injection fluid flow and perforation affect the hydraulic fracturing pressure. In this research, a triaxial machine was designed and built for experimental investigation of the hydraulic fracturing in conditions close to the field conditions, so that all three of the main stresses in field conditions are applied in laboratory tests. Then, the influence of different perforation parameters such as perforation geometry (including length, diameter and shape), phase of perforation (in both vertical and horizontal wells) and minimum horizontal stress in the presence of perforation, using 38 artificial specimens (plaster + sand) with dimensions of 10×10×10 cm, was considered on the geometry and breakdown pressure, pressure-time diagram, and the development of micro-cracks. The results showed that increasing the perforation diameter, changing the perforation angle to the maximum horizontal stress and increasing the minimum horizontal stress in the case of reverse fault, rises the breakdown pressure.
 
Introduction
Hydraulic fracturing is a stimulation technique used in oil and gas wells to increase the inflow to well bore in low permeability formations. Various parameters such as in-situ stress field, joints and natural fractures of the formation, the fluid rheology, the mechanical properties of the formation, injection fluid flow and perforation affect the hydraulic fracturing pressure. Currently, more than half of the USA oil and gas wells are not able to produce without the use of hydraulic fracturing technology. Many researchers have studied hydraulic fracturing behavior of rocks since decades ago. The researches have showed that hydraulic fracturing operations increase the production of oil wells by up to 30 percent and increase gas wells by 90 percent.
 
Methodology and Approaches
In this research, a triaxial machine was designed and built for the experimental study of hydraulic fracturing and to apply in-situ stresses with different values. This machine has the ability to apply anisotropic stresses in laboratory scale. Abaqus software was utilized to design the machine in terms of stability against the applied stresses. Then, using physical modeling, 38 samples with dimensions of 10×10×10 cm including plaster and sand were constructed and the influence of different perforation parameters such as perforation geometry (including length, diameter and shape), phase of perforation (in both vertical and horizontal wells) and minimum horizontal stress in the presence of perforation on hydraulic fracturing operations were investigated. Finally, the breakdown pressure, hydraulic fracturing geometry, pressure-time diagram and the development of micro-cracks were studied.
 
Results and Conclusions
The results of this study showed that increasing the perforation diameter, changing the perforation angle to the maximum horizontal stress and increasing the minimum horizontal stress in the case of reverse fault, rises the breakdown pressure. Also, the increase of the perforation length and its geometry have not significant effect on the breakdown pressure. Additionally, the change in the perforation angle and the minimum horizontal stress relative to the change in the perforation geometry, including length, diameter, and shape, have more effect on the breakdown pressure and changing the perforation angle relative to changing the in-situ stress in the horizontal well bore is more effective on the breakdown pressure.

کلیدواژه‌ها [English]

  • Hydraulic Fracturing
  • In-situ Stresses
  • Perforation Geometry
  • Perforation Phase Angle
  • Breakdown Pressure

شکست هیدرولیکی[i]، یکی از مهم­ترین روش­ها برای تحریک مخازن نفت و گاز با نفوذپذیری پایین است. این روش برای افزایش بهره­وری در مخازن ماسه سنگی با ضخامت کم و همچنین مخازن شیلی با نفوذپذیری و تخلخل مؤثر پایین، کاربرد زیادی دارد[1]. در حال حاضر، بیش از نیمی از چاه­های نفت و گاز آمریکا، بدون بهره‌گیری از فناوری شکست هیدرولیکی قادر به تولید نیستند. امروزه در منطقه آمریکای شمالی، در حدود 58 درصد از چاه‌های گازی و 38 درصد از چاه‌های نفتی، از شکستگی‌های مصنوعی برای تحریک مخازن نفت و گاز استفاده می‌شود. استفاده از تکنولوژی شکست هیدرولیکی در چاه‌های ذکر شده، باعث افزایش دو تا پنج برابری تولید شده است. تحقیقات انجام شده نشان داده است که عملیات شکست هیدرولیکی، تولید چاه‌های نفتی را تا 30 درصد و چاه‌های گازی را تا 90 درصد افزایش می دهد[2].



[i] Hydraulic Fracturing

[1]           API Technical Report, (2009), Hydraulic Fracturing Operations-Well Construction and Integrity Guidelines, Washington, DC, American Petroleum Institute.
[2]           Montgomeri, C. T., & Smith, M. B. (2010). NSI Technologies, Hydraulic Fracturing: History of an Enduring Technology. Technical Report JPT, JPT.
[3]           Haimson, B., & Fairhurst, C. (1969). Hydraulic fracturing in porous-permeable materials. Journal of Petroleum Technology. 21(7), 811-817.
[4]           Warpinski, N. R., Clark, J. A., Schmidt, R. A., & Huddle, C. W. (1982). Laboratory investigation on the effect of in-situ stresses on hydraulic fracture containment. Society of Petroleum Engineers Journal. 22(3), 333-340.
[5]           Doe, T. W., & Boyce, G. (1989). Orientation of hydraulic fractures in salt under hydrostatic and non-hydrostatic stresses. Int. J. Rock Mech. Min. Sci. 26(6), 605-611.
[6]           Beugelsdijk, L. J. L., Pater, C. J., & Sato, K. (2000). Experimental hydraulic fracture propagation in a multi fractured medium. In the SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan.
[7]           Lhomme, T. P., Pater, C. J., & Helfferich, P. H. (2002). Experimental study of hydraulic fracture initiation in Colton sandstone. In the SPE/ISRM Rock Mechanics Conference, Texas, USA.
[8]           Bohloli, B., & Pater, C. J. (2006). Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress. Journal of Petroleum Science and Engineering, 53 (1-2), 1-12.
[9]           Olson, J. E., & Bahorich, B. (2012). Examining hydraulic fracture: Natural fracture interaction in hydrostone block experiments. In the SPE Hydraulic Fracturing Technology Conference, Texas, USA.
[10]         Damani, A., Sharma, A., Sondergeld, C. H, & Rai, C. S. (2012). Mapping of hydraulic fractures under triaxial stress conditions in laboratory experiments using acoustic emissions. In the SPE Annual Technical Conference and Exhibition, Texas, USA.
[11]         Chitrala, Y., Moreno, C., Sondergeld, C., & Rai, C. (2013). An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions. Journal of Petroleum Science and Engineering. 108, 151-161.
[12]         Guo, T., Zhang, S., Qu, Z., Zhou, T., Xiao, Y., & Gao, J. (2014). Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel, 128, 373-380.
[13]         Behnia, M., Goshtasbi, K., Fatehi Marji, M., & Golshani, A. (2014). Numerical simulation of crack propagation in layered formations. Arabian Journal of Geosciences, 7(7), 2729-2737.
[14]         Fatehi Marji, M. (2014). Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method. International Journal of Solids and Structures, 51, 1716-1736.
[15]         Haeri, H., Khaloo, A., & Fatehi Marji, M. (2015). Experimental and numerical analysis of Brazilian discs with multiple parallel cracks. Arabian Journal of Geosciences, 8(8), 5897-5908.
[16]         Haeri, H., Khaloo, A., & Fatehi Marji, M. (2015). Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials. Strength of Materials, 47(5), 740- 754.
[17]         Moradi, A., Tokhmechi, B., Rasouli, V., & Fatehi Marji, M. (2017). A comprehensive numerical study of hydraulic fracturing process and its affecting parameters. Geotechnical and Geological Engineering, 35(3), 1035-1050.
[18]         Moradi, A., Tokhmechi, B., Rasouli, V., & Fatehi Marji, M. (2018). Displacement discontinuity analysis of the effects of various hydraulic fracturing parameters on the crack opening displacement (cod). Journal of Petroleum Science and Technology, 8(3), 3-13.
[19]         Behrmann, L. A., & Elbel, J. L. (1991). Effect of perforations on fracture initiation. Journal of Petroleum Technology. 43(5), 608-615.
[20]         Ketterij, R. B., & Pater, C. J. (1999). Impact of perforations on hydraulic fracture tortuosity. In the SPE European Formation Damage Conference, Hague, Netherlands.
[21]         Alekseenko, O. P., Potapenko, D. I., Cherny, S. G., Esipov, D. V., Kuranakov, D. S., & Lapin V. N. (2012). 3-D modeling of fracture initiation from perforated non-cemented wellbore. In the SPE Hydraulic Fracturing Technology Conference, Texas, USA.
[22]         Abdollahipour, A., Fatehi Marji, M., Yarahmadi Bafghi, A., & Gholamnejad, J. (2015).  Simulating the propagation of hydraulic fractures from a circular wellbore using the Displacement Discontinuity Method. International Journal of Rock Mechanics & Mining Sciences, 80, 281-291.
[23]         Hossain, M. M., Rahman, M. K., & Rahman, S. S. (2000). Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes. Journal of Petroleum Science and Engineering, 27(3-4), 129-149.
[24]         Fjar, E., Holt, R. M., Raaen, A. M., Risnes, R., & Horsrud, P. (2008). Petroleum Related Rock Mechanics. 2nd Edition, Elsevier Science publishers B.V, Netherlands.
[25]         Irwin, G. R. (1957). Analysis of stresses and strain near the end of crack traversing a plate. J. Appl. Mech., 24, 361-364.
[26]         ISRM. (2007). The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Ulusay, R., & Hudson, J. A. (eds.), Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey.