ارائه مدل ترکیبی حاصل از دو مدل فیزیک سنگ با روش انتگرال فازی سوگنو در یکی از میادین نفتی جنوب غربی ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

2 دانشکده مهندسی معدن، دانشگاه تهران

10.29252/anm.2019.1631

چکیده

با به‌ کارگیری مدل‌های فیزیک سنگی، شناسائی هرچه دقیق‌تر مخزن هیدروکربوری امکان‌پذیر است و به دنبال آن مخاطره اکتشاف و تولید نفت و گاز به میزان قابل‌توجهی کاهش می­یابد. در مطالعه حاضر، سه مدل فیزیک سنگ خود سازگار-گاسمن، شو-پاین و شو-وایت در یک مخزن کربناته نفتی در جنوب غربی ایران در دو چاه هدف مورد بررسی قرار گرفتند. با استفاده از روش­های ترکیب اطلاعات انتگرال فازی سوگنو و وزن دهی افزایشی ساده، دو مدل ترکیبی مختص مخزن مورد مطالعه، تهیه و ارائه گردیدند. سرعت موج طولی و برشی با کمک نگارهای چاهی و نوع حفرات حاصل از مقاطع نازک و سی‌تی‌اسکن در مخزن مورد مطالعه برآورد و از لحاظ کمی و کیفی مقایسه گردید. نتایج نشان داد که خطای نسبی در تخمین سرعت موج برشی در چاه A و B به ترتیب از 21 درصد به 4 درصد و از 24 درصد به 5/4 درصد رسید. همچنین خطای نسبی در تخمین سرعت موج طولی در چاه‌های مورد مطالعه از 14 به 5/2 درصد در چاه A و از 21 به 2 درصد در چاه B کاهش یافت. همچنین در بین سه مدل موجود نتایج برآورد شو-وایت و سوگنو در تخمین سرعت‌های طولی و برشی در چاه A به ترتیب از کمترین(79 و 81) و بیشترین ضریب همبستگی (99 و 98) با داده واقعی برخوردار بودند. در واقع نتایج به دست آمده از سه مدل فیزیک سنگی و مدل‌های ترکیبی بیانگرآن است که مدل ترکیب شده با روش سوگنو بهترین برآورد را ارائه نموده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presentation of a Fusion Model Derived From Two Rock Physics Models Using Sugeno Fuzzy Integral Method in One of the Southwestern Oilfields of Iran

نویسندگان [English]

  • Hamid Seifi 1
  • Behzad Tokhmechi 1
  • Ali Moradzadeh 2
1 Dept. of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
2 Dept. of Mining, University of Tehran, Tehran, Iran
چکیده [English]

Summary
Using rock physics models, it is possible to simulate the reservoir more precisely and as a result, the risk of exploration and production of oil and gas will be reduced significantly. In this study, three models of Self-Consistent-Gassmann, Xu-Payne, and Xu-White were investigated in two wells in a carbonate reservoir in the southwest of Iran. Then, two fused models were proposed to improve the accuracy and improve the efficiency by using the Sugeno fuzzy integral fusion method and Simple Additive Weighting (SAW) Model, respectively.  The compressional wave velocity and shear wave velocity were estimated using the 5 mentioned models. The results show that in Xu-White and Sugeno fuzzy integral models, the estimation of compressional and shear velocity in well A have the lowest (79 and 81) and the highest correlation coefficient (99 and 98) with real data, respectively. This indicates that the Sugeno fused model is the best estimate.
 
Introduction
Since the seismic reservoir characterization has a very important role in all stages of exploration up to the development and production of hydrocarbon reservoirs, it is important to identify the relationship between reservoir properties and their elastic behavior, using the rock physics model. In order to improve the rock physics models, researchers have proposed different methods, which in this study Sugeno fuzzy integral fusion method has been used.
 
Methodology and Approaches
The study of the elastic properties of rock physics on carbonate rock was carried out through Self-Consistent-Gassmann, Xu-Payne, and Xu-White rock physics models. All these models were built to derive optimal elastic properties to obtain reliable estimates of compressional wave velocity, shear wave velocity.The main step consisted of modeling each of the seismic rock properties over a specified porosity, pore space system, and hydrocarbon type. In the end, these two models are fused by the Sugeno fuzzy integral fusion model and SAW model. All the models have been evaluated by measured (observed) data.
 
Results and Conclusions
Three models of Self-Consistent-Gassmann, Xu-Payne, and Xu-White rock physics were evaluated and compared using petrophysical and geological data, in a carbonate reservoir of an Iranian oil field. By examining the results of compressional and shear wave velocity estimation using two fusion methods (SAW and Sugeno) and three models of rock physics, it is determined that the methods and models used for the studied carbonate reservoir have given a satisfactory result, but the Sugeno fusion model has improved the results. The reason for this could be related to the use of optimization algorithms in the Sugeno.

کلیدواژه‌ها [English]

  • Data Fusion
  • Self Consistent -Gassmann Model
  • Shear /Compressional Wave Velocity
  • Simple Additive Weighting Model
  • Xu-Payne Model
  • Xu-White Model

امروزه ثابت شده که داده­های لرزه‌ای در مطالعات مخزن چه در بخش اکتشاف، چه در حیطه تولید و توسعه و چه در ازدیاد برداشت مخازن هیدروکربوری، نقش به سزایی دارد. همچنین با توجه به اینکه مخازن بزرگ به نیمه دوم عمر خود در تولید رسیده اند و اکتشاف مخازن نفت و گاز بزرگ دنیا از روندی کاهشی برخوردار شده اند، لذا اهمیت استفاده از داده‌های لرزه‌ای روز به روز افزایش می‌یابد. به منظور ارتباط داده لرزه‌ای (پارامترهای الاستیک) ‌به پارامترهای مخزنی از علم فیزیک سنگ استفاده می‌شود. علم فیزیک سنگ در واقع به منظور کمی‌سازی نتایج مطالعات لرزه‌ای به کار می‌رود]1-4[. پارامترهای الاستیک شامل سرعت موج فشاری،‌ سرعت موج برشی و چگالی است که روابط فیزیک سنگی به استخراج خواص مخزنی و زمین‌شناسی (از جمله تخلخل، محتوای رس، اشباع سیال و لیتولوژی) از پارامترهای الاستیک کمک شایانی می­کند. در مطالعات ژئوفیزیکی مخازن هیدروکروبوری، استخراج اطلاعات مناسب از خواص مخزنی منوط به وجود یک مدل معتبر از خصوصیات فیزیکی سنگ است، به عبارت دیگر داشتن بهترین مدل فیزیک سنگ، از اهمیت بسیاری برخوردار است ]7-5[.

[1]           Baaziz, A., & Quoniam, L., (2014). "How to use Big Data technologies to optimize operations in Upstream Petroleum Industry", arXiv:1412.0755.
[2]           Wilson, T. H., Smith, V., & Brown, A., (2015). "Developing a model discrete fracture network, drilling, and enhanced oil recovery strategy in an unconventional naturally fractured reservoir using integrated field, image log, and three-dimensional seismic data", AAPG bulletin, 99(4), 735-762.
[3]           Irfan, M., Lenn, C. P., & Ghosh, D., (2017). "Seismic Stimulation and Induced Seismicity in Oil Reservoirs: A Review of Applications to Enhanced Oil Recovery (EOR) ", In ICIPEG 2016 (pp. 183-194). Springer, Singapore.
[4]           Wei, G., Wang, Y., Liu, H., Yang, H., Kong, Q., & Lv, D., (2018). "Joint method of multiscale geophysical data and its application in reservoir characterization", In SEG Technical Program Expanded Abstracts 2018 (pp. 3125-3129). Society of Exploration Geophysicists.
[5]           Lumley, D., (2001). "Time–lapse seismic reservoir monitoring", Geophysics, 66, p.50-53.
[6]           Avseth, P., Mukerji, T., Mavko, G., (2008). "Quantitative Seismic Interpretation Applying Rock Physics Tools to Reduce Interpretation Risk", Cambridge University Press, Sixth Edition, Cambridge, UK, p.356.
[7]           Yusoff, Y. B. M., Radzi., N. A., Khalil, A., Amadan, A., Hong, C.W., Zeb, J., Ting, J., (2014). "Rock physics modeling in oil and gas field development a methodology for reservoir characterization below shallow gas", International Petroleum Technology Conference, IPTC-18121-MS, Kuala Lumpur, Malaysia.
[8]           Abbey, C. P., Okpogo, E. U., & Atueyi, I. O., (2018). "Application of rock physics parameters for lithology and fluid prediction of ‘TN’field of Niger Delta basin, Nigeria", Egyptian Journal of Petroleum.
[9]           Ghon, G., Rankey, E. C., Baechle, G. T., Schlaich, M., Ali, S. H., Mokhtar, S., & Poppelreiter, M. C., (2018). "Carbonate Reservoir Characterisation of an Isolated Platform Integrating Sequence Stratigraphy and Rock Physics in Centr", In 80th EAGE Conference and Exhibition 2018.
[10]         Li, H., & Zhang, J., (2018). "Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates", Journal of Applied Geophysics, 151, 175-183.
[11]         Luanxiao, Z., Nasser, M., Han, D., (2013). "Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs", European Association of Geoscientists & Engineers, Geophysical Prospecting,61, p.827-841.
[12]         Xu, S., Payne, M., (2009). "Modelling Elastic Properties in Carbonate Rocks”, The leading edge, 28, p.66-74.
[13]         Mavko, G., Mukerji, T., Dvorkin, J., (2009). "The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media", Cambridge University Press, Second Edition, Cambridge, UK, p.511.
[14]         Berryman, J. G., (1995). "Mixture theories for rock properties", In T. J. Ahrens, (Ed.), "Rock physics and phase relations, A handbook of physics constants", American Geophysical Union, p.205-228.
[15]         Bashah, N.S., Pierson, B., (2012). "Quantification of pore structure in a Miocene Carbonate Build-up Central Luconia, Sarawak and its relationship to sonic velocity", IPTC, Thailand.
[16]         Wang, Z., Wang, R., Schmitt D.R., Zhou, Y., Wang, F., (2017). "Carbonate rock physics modelling at ultrasonic and seismic frequencies",4th International Workshop on Rock Physics, Trondheim, Norway.
[17]         Saenger, E.H., Vialle, S., Lebedev, M., Uribe, D., Osorno, M., Duda, M., Steeb, H., (2016). "Digital carbonate rock physics", Solid Earth, 7, p.1185-1197.
[18]         Eberli, G.P., Baechle, G.T., Anselmetti, F.S., Incze, M.L., (2003). "Factors controlling elastic properties in carbonate sediments and rocks", The Leading Edge ,22, p.654-660.
[19]         Hall, D.L. and Llinas, J., (2001). "Handbook of Multisensor Data Fusion", CRC Press LLC.
[20]         Nashawi, I. S., & Malallah, A., (2010). "Permeability prediction from wireline well logs using fuzzy logic and discriminant analysis", In SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers.
[21]         Abdulaheem, A., Sabakhy, E., Ahmed, M., Vantala, A., Raharja, P. D., & Korvin, G., (2007). "Estimation of permeability from wireline logs in a middle eastern carbonate reservoir using fuzzy logic", In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers.
[22]         Cuddy, S. J., (2000). "Litho-facies and permeability prediction from electrical logs using fuzzy logic", SPE Reservoir Evaluation & Engineering, 3(04), 319-324.
[23]         Valet, L., Mauris, G., Bolon, P., & Keskes, N., (2001). "Seismic image segmentation by fuzzy fusion of attributes", IEEE Transactions on Instrumentation and Measurement, 50(4), 1014-1018.
[24]         Guo, H. X., Zhu, K. J., Gao, S. W., Li, Y., & Zhou, J. J., (2009). "Extracting fuzzy rules based on fusion of soft computing in oil exploration management, "Expert Systems with Applications, 36(2), 2081-2087.
[25]         Ziyong, Z., Hangyu, Y., & Xiaodan, G., (2017). " Fuzzy fusion of geological and geophysical data for mapping hydrocarbon potential based on GIS", Petroleum Geoscience, petgeo2016-100.
[26]         Hajian, A., & Styles, P., (2018). "Applications of Fuzzy Logic in Geophysics", In Application of Soft Computing and Intelligent Methods in Geophysics (pp. 301-371). Springer, Cham.
[27]         De Sousa, M. C., De Figueiredo, J. J., da Silva, C. B., & Nascimento, M. J. D. S. (2019). "Prediction of S-wave velocity by a hybrid model based on the Greenberg-Castagna equation, Journal of Petroleum Science and Engineering, 172, 303-313.
[28]         Yang, Y., Ma, J., Wang, H., & Li, L. (2018). "Shear wave velocity prediction with optimized Xu-White model constrained by varying aspect ratios in tight sandstone reservoir", In International Geophysical Conference, Beijing, China, 24-27 April 2018 (pp. 514-517). Society of Exploration Geophysicists and Chinese Petroleum Society.
[29]         Du, Q., Yasin, Q., & Ismail, A. (2018). "A comparative analysis of artificial neural network and rock physics for the estimation of shear wave velocity in a highly heterogeneous reservoir", In SEG Technical Program Expanded Abstracts 2018 (pp. 2246-2250). Society of Exploration Geophysicists.
[30]         Karimpouli, S., & Tahmasebi, P. (2019)."Image-based velocity estimation of rock using Convolutional Neural Networks", Neural Networks, 111, 89-97.
[31]         Morshedy, A. H., & Marji, M. F. (2018)."Three-dimensional modelling of reservoir fluid typing by applying nuclear magnetic resonance (NMR) and thermophysical parameters", Bollettino di Geofisica Teorica ed Applicata, 59(1).
[32]         Gogoi, T., & Chatterjee, R. (2019). "Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India", Geoscience Frontiers, 10(3), 1113-1124.
[33]         Torra, V. and Narukawa, Y., (2006). " The interpretation of fuzzy integrals and their application to fuzzy systems", Internat. J. Approx. Reason. 41, 43–58.
[34]         Campos, L. M. D., and Bolafios M. J., (1992). "Characterization and comparison of Sugeno and Choquet integrals, Fuzzy Sets and Systems", North-Holland, 52, 61-
[35]         Blum, R. S., & Liu, Z., (2005), "Multi-sensor image fusion and its applications". CRC press.67.
[36]         Seifi, H., Tokhmechi, B., & Moradzadeh, A. (2018). Evaluation of Kuster-Toksoz and Xu-Payne Rock Physics Modeling in an Iranian Carbonate Hydrocarbon Reservoir. Journal of research on applied geophysics, online accepted (http://jrag.shahroodut.ac.ir/article_1368.html) in December 2018(In Persian).