[1] Chang S-H, Lee C-I, Jeon S. Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 2002;66:79–97. doi:10.1016/S0013-7952(02)00033-9.
[2] Hoek E, Martin CD. Fracture initiation and propagation in intact rock – A review. J Rock Mech Geotech Eng 2014;6:287–300. doi:10.1016/J.JRMGE.2014.06.001.
[3] Lisjak A, Kaifosh P, He L, Tatone BSA, Mahabadi OK, Grasselli G. A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses. Comput Geotech 2017;81:1–18. doi:10.1016/J.COMPGEO.2016.07.009.
[4] Jing L, Hudson JA. Numerical methods in rock mechanics. Int J Rock Mech Min Sci 2002;39:409–27. doi:10.1016/S1365-1609(02)00065-5.
[5] Cundall PA. A computer model for simulating progressive large-scale movements in blocky rock systems. Proocedings Symp. Int. Soc. Rock Mech. Nancy 2, 1971, p. No. 8. doi:10.1111/j.1469-8137.1986.tb00632.x.
[6] Lisjak A, Grasselli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 2014;6:301–14. doi:10.1016/J.JRMGE.2013.12.007.
[7] Bouhala L, Makradi A, Belouettar S. Thermo-anisotropic crack propagation by XFEM. Int J Mech Sci 2015;103:235–46. doi:10.1016/J.IJMECSCI.2015.09.014.
[8] Sivakumar G, Maji VB. Simulation of crack propagation in rocks by XFEM. Proc. Conf. Recent Adv. Rock Eng. (RARE 2016), Paris, France: Atlantis Press; 2016. doi:10.2991/rare-16.2016.46.
[9] Yang Y, Ju Y, Sun Y, Zhang D. Numerical study of the stress field during crack growth in porous rocks. Geomech Geophys Geo-Energy Geo-Resources 2015;1:91–101. doi:10.1007/s40948-015-0011-1.
[10] Abdollahipour A, Marji MF, Bafghi AY, Gholamnejad J. Time-dependent crack propagation in a poroelastic medium using a fully coupled hydromechanical displacement discontinuity method. Int J Fract 2016;199:71–87. doi:10.1007/s10704-016-0095-9.
[11] Behnia M, Goshtasbi K, Fatehi Marji M, Golshani A. On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method. J Min Environ 2012;2:1–16. doi:10.22044/jme.2012.15.
[12] Hosseini-Nasab H, Fatehi-Marji M. A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting. J Mech Mater Struct 2007;2:1515–24.
[13] Haeri H, Khaloo A, Marji MF. A coupled experimental and numerical simulation of rock slope joints behavior. Arab J Geosci 2015;8:7297–308. doi:10.1007/s12517-014-1741-z.
[14] Rege K, Lemu HG. A review of fatigue crack propagation modelling techniques using FEM and XFEM. IOP Conf Ser Mater Sci Eng 2017;276:012027. doi:10.1088/1757-899X/276/1/012027.
[15] Giner E, Sukumar N, Denia FD, Fuenmayor FJ. Extended finite element method for fretting fatigue crack propagation. Int J Solids Struct 2008;45:5675–87. doi:10.1016/J.IJSOLSTR.2008.06.009.
[16] Golewski GL, Golewski P, Sadowski T. Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Comput Mater Sci 2012;62:75–8. doi:10.1016/j.commatsci.2012.05.009.
[17] Dahi-Taleghani A, Olson JE. Numerical Modeling of Multistranded-Hydraulic-Fracture Propagation: Accounting for the Interaction Between Induced and Natural Fractures. SPE J 2011;16:575–81. doi:10.2118/124884-pa.
[18] Khoei AR, Vahab M, Haghighat E, Moallemi S. A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique. Int J Fract 2014;188:79–108. doi:10.1007/s10704-014-9948-2.
[19] Gordeliy E, Peirce A. Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput Methods Appl Mech Eng 2015;283:474–502. doi:10.1016/j.cma.2014.09.004.
[20] Abdollahipour A, Fatehi Marji M, Yarahmadi Bafghi A, Gholamnejad J. Numerical investigation of effect of crack geometrical parameters on hydraulic fracturing process of hydrocarbon reservoirs. J Min Environ 2016;7:205–14. doi:10.22044/jme.2016.532.
[21] Behnia M, Goshtasbi K, Marji MF, Golshani A. Numerical simulation of crack propagation in layered formations. Arab J Geosci 2014;7:2729–37. doi:10.1007/s12517-013-0885-6.
[22] Ayatollahi MR, Pavier MJ, Smith DJ. Mode I cracks subjected to large T -stresses 2002:159–74.
[23] Nasaj Moghaddam H, Keyhani A, Aghayan I. Modelling of Crack Propagation in Layered Structures Using Extended Finite Element Method. Civ Eng J 2016;2:180–8.
[24] Baydoun M, Fries TP. Crack propagation criteria in three dimensions using the XFEM and an explicit-implicit crack description. Int. J. Fract., vol. 178, Springer Netherlands; 2012, p. 51–70. doi:10.1007/s10704-012-9762-7.
[25] Karimpouli S, Tahmasebi P. Conditional reconstruction: An alternative strategy in digital rock physics. GEOPHYSICS 2016;81:D465–77. doi:10.1190/geo2015-0260.1.
[26] Karimpouli S, Tahmasebi P, Saenger EH. Estimating 3D elastic moduli of rock from 2D thin-section images using differential effective medium theory. GEOPHYSICS 2018;83:MR211–9. doi:10.1190/geo2017-0504.1.
[27] Hillerborg A, Modéer M, Petersson P-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 1976;6:773–81. doi:10.1016/0008-8846(76)90007-7.
[28] Rezanezhad M, Lajevardi SA, Karimpouli S. Effects of pore-crack relative location on crack propagation in porous media using XFEM method. Theor Appl Fract Mech 2019;103:102241. doi:10.1016/j.tafmec.2019.102241.
[29] Mohammadi S. Extended Finite Element Method. Oxford, UK: Blackwell Publishing Ltd; 2008. doi:10.1002/9780470697795.
[30] Giner E, Sukumar N, Tarancón JE, Fuenmayor FJ. An Abaqus implementation of the extended finite element method. Eng Fract Mech 2009;76:347–68. doi:10.1016/j.engfracmech.2008.10.015.
[31] Rodriguez-Florez N, Carriero A, Shefelbine SJ. The use of XFEM to assess the influence of intra-cortical porosity on crack propagation. Comput Methods Biomech Biomed Engin 2017;20:385–92. doi:10.1080/10255842.2016.1235158.
[32] Belytschko T, Moes N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 2001;50:993–1013. doi:10.1002/1097-0207(20010210)50:43.0.CO;2-M.
[33] Rodriguez-Florez N. Mechanics of cortical bone: exploring the micro- and nano-scale. Imperial College London, 2015.
[34] Sih GC. Mechanics of fracture, 1. Methods of analysis and solutions of crack problems. Materwiss Werksttech 1973:516. doi:10.1002/mawe.19730040714.
[35] Arshadnejad S. Analysis of the First Cracks Generating Between Two Holes Under Incremental Static Loading with an Innovation Method by Numerical Modelling. Math Comput Sci 2017;2:120. doi:10.11648/j.mcs.20170206.15.
[36] Zhang Z. An empirical relation between mode I fracture toughness and the tensile strength of rock. Int J Rock Mech Min Sci 2002;39:401–6. doi:10.1016/S1365-1609(02)00032-1.
[37] Bazant ZP, Kazemi MT. Size Effect in Fracture of Ceramics and Its Use To Determine Fracture Energy and Effective Process Zone Length. J Am Ceram Soc 1990;73:1841–53. doi:10.1111/j.1151-2916.1990.tb05233.x.
[38] Bai QS, Tu SH, Zhang C. DEM investigation of the fracture mechanism of rock disc containing hole(s) and its influence on tensile strength. Theor Appl Fract Mech 2016;86:197–216. doi:10.1016/j.tafmec.2016.07.005.
[39] Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M, et al. Digital rock physics benchmarks—Part I: Imaging and segmentation. Comput Geosci 2013;50:25–32. doi:10.1016/j.cageo.2012.09.005.
[40] Huang J-Q, Huang Q-A, Qin M, Dong W-J, Chen X-W. Experimental study on the dielectrostriction of SiO2 with a micro-fabricated cantilever. 2009 IEEE Sensors, IEEE; 2009, p. 1030–3. doi:10.1109/ICSENS.2009.5398528.
[41] Karimpouli S, Khoshlesan S, Saenger EH, Koochi HH. Application of alternative digital rock physics methods in a real case study: a challenge between clean and cemented samples. Geophys Prospect 2018;66:767–83. doi:10.1111/1365-2478.12611.