برنامه‌ریزی تولید کوتاه‌مدت خطی برای ذخایر معدنی با تغییرپذیری شدید زمین‌شناسی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

10.29252/anm.2020.13059.1425

چکیده

معادن خاک نسوز و خاک صنعتی به دلیل شرایط زمین‌شناسی و ماهیت رگه‌ای که دارند، معمولا لایه‌های به شدت به‌هم‌ریخته و نامنظمی دارند و امکان برنامه زیری تولید مبتنی بر مدل بلوکی برای آنها به راحتی وجود ندارد. از این رو در این مطالعه، مدلی برای برنامه ریزی تولید کوتاه مدت این نوع معادن توسعه داده شده است. تابع هدف مدل بر اساس کمینه سازی هزینه ها تعریف شده است. در پژوهش حاضر، محدودیت های اکتشاف مواد جدید شیب در تابع هدف گنجانده شده است. مدل برای یکی از سینه کارهای در حال کار معدن خاک نسوز استقلال آباده در نظر گرفته شده است. به منظور اعتبارسنجی نتایج، مدل استاندارد برنامه ریزی تولید به کار گرفته شده است. مدل برای هشت دوره زمانی(هفته) با نرم افزار CPLEX حل شد. نتایج به دست آمده حاکی از آن بود که مدل توسعه داده شده توانست نسبت به مدل استاندارد هزینه‌ها را چهار درصد کاهش دهد. میزان برداشت از سینه‌کار 5/18 درصد و میزان انتقال مواد به انباشتگاه 17 درصد نسبت به مدل استاندارد افزایش یافت. اما میزان برداشت مواد از انباشتگاه 90 درصد نسبت به مدل استاندارد کاهش داشته است. به منظور بررسی وضعیت عملکرد پارامترهای مدل، تحلیل حساسیت روی پارامترها انجام شد. نتایج تحلیل حساسیت پارامترها نشان دادند که هزینه استخراج هر تن مواد هم‌اکنون در نقطه عطف نمودار قرار دارد. هزینه انتقال هر تن مواد به انباشتگاه دارای دو نقطه کمینه است که هم‌اکنون تابع هدف در نقطه کمینه محلی قرار دارد. تابع هدف نسبت به هزینه برداشت از انباشتگاه حساسیتی نشان نداد. هزینه‌های ایجاد شیب در پله‌های دوم معدن بهینه نیست و با اندکی بهینه‌سازی در این هزینه‌ها می‌توان تابع هدف را کاهش داد. هزینه‌های ایجاد شیب کاری در ترازهای سوم و چهارم نیز از روال منطقی پیروی کرده و با افزایش این هزینه‌ها، تابع هدف نیز افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Short-Term Linear Production scheduling for Mineral Reserves with Severe Geological Variability

نویسندگان [English]

  • Reza Pour Yazdan Panah
  • ali azimi
  • Alireza Jabinpour
Mining and Metallurgical Engineering Department, Yazd University
چکیده [English]

The characteristics of fire clay soil mines are their High Geologic Variable Reserves. This article presents a model for scheduling such mines. The objective function is defined by minimizing costs. For the first time, constraints were added to the model to explore new minerals. Slope constraints were also defined by cost. To execute the model, one of the working face in the mine was considered. Standard scheduling model was used to evaluate the validity of the obtained results and the material layers were considered as hypothetical blocks. These models were solved for 8 time periods (weeks) by CPLEX software. The results showed that the assumed model was able to reduce costs by 4% compared to the standard model. Extract rate increased by 18.5% and transferring to stockpile by 17% compared to standard model. But the rate of material reclaiming from the stockpile was 90% lower than the standard model. The results of the sensitivity analysis of the parameters also showed that the extraction cost per ton of minerals is currently at a turning point in the graph. The cost of transporting each ton of minerals to the stockpiles has two minimum points, which is currently at the local minimum. Mining costs were not sensitive to the cost of reclaiming. Slope creating costs are not optimal in the second bench of the mine, and with a bit of optimization these costs can reduce overall mine costs. The costs of developing slopes in the third and fourth levels also follow a rational procedure, and as these costs increase, overall mine costs also increase.

کلیدواژه‌ها [English]

  • Short-Term Production Scheduling
  • Linear Scheduling
  • Geological Variability
  • Fire clay
  • Abadeh Esteghlal Mine

عملیات معدنکاری به‌صورت معمول مبتنی بر مدل بلوکی حاصل از عملیات اکتشاف و مدل‌سازی ذخیره است. ازاین‌رو مدل کانسار آرایه‌ای سه‌بعدی از بلوک‌های منظم است که هر بلوک مفهوم یک واحد را برای معدنکاری دارد. مشخصات هر بلوک به‌منظور تنظیم عملیات مورداستفاده قرار می‌گیرد. مجموعه بلوک‌ها در سه بعد، ورودی فرآیند برنامه‌ریزی تولید را تشکیل می‌دهد. به‌منظور عملکرد صحیح یک معدن، معدنکاری بلوک‌ها باید در زمان صحیح، کارآمد و سودآور صورت گیرد. برنامه‌ریزی تولید معدن روباز به معنی استخراج توالی مواد معدن به سودآورترین شکل ممکن است، به‌نحوی‌که محدودیت‌های فیزیکی و عملیاتی نیز برآورده شوند.

بلوک‌ها به دودسته تقسیم‌بندی می‌شوند: بلوک‌های ماده معدنی که می‌توان آن‌ها را به نحو سودآوری استخراج و فرآوری نمود؛ و بلوک‌های باطله که شامل باقی بلوک‌ها خواهد بود. ارزش اقتصادی هر بلوک به معنای سود خالص حاصل از آن بلوک است. فرایند برنامه‌ریزی تولید در هر دوره زمانی مبتنی بر مجموعه‌ای از بلوک‌ها است که با استخراج آن‌ها، ارزش خالص فعلی معدنکاری در انتهای عمر معدن بیشینه می‌شود؛ بنابراین می‌توان گفت که مسئله برنامه‌ریزی تولید به دنبال انتخاب بلوک‌هایی برای استخراج، در دوره‌های زمانی مشخص استخراج آن‌ها و گزینه‌های فراوری آن‌ها، در عین برآورده کردن محدودیت‌های توالی در میان بلوک‌ها است. این فرایند باید بر اساس محدودیت‌های منابع عملیاتی و بیشینه و/یا کمینه بودن عیار مجاز ماده معدنی یا آلاینده‌ها انجام می‌شود، به‌نحوی‌که ارزش خالص فعلی بیشینه شود [1].

[1]                 Jelvez E., Morales N., Nancel-Penard P., Cornillier F., (2019). A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application, Omega (2019), (doi: https://doi.org/10.1016/j.omega.2019.03.004)
[2]                 Caccetta L., Hill S.P., An application of branch and cut to open pit mine scheduling, J. Global Optim. 27 (2) (2003) 349–365, (http://dx.doi.org/10.1023/A:1024835022186)
[3]                 Dagdelen K., Johnson T.B., Optimum open pit mine production scheduling by Lagrangian parameterization, in: Paper Presented at the Proc. of the 19th APCOM, 1986.
[4]                 Paithankar A., Chatterjee Sh. (2019). Open pit mine production schedule optimization using a hybrid of maximum-flow and genetic algorithms; Applied Soft Computing, Volume 81, August 2019, 105507 (https://doi.org/10.1016/j.asoc.2019.105507)
[5]                 Mai N.L., Topal E., Erten O., Sommerville B., (2019). A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming; Resources Policy (2019), (https://doi.org/10.1016/j.resourpol.2018.11.004).
[6]                 Ravenscroft, P.J. (1992) Risk analysis for mine scheduling by conditional simulation; Traus lnst Miu Metall (Sect A Min ind) VIOl, May-Aug 1992, PAIO4-AI08 (Abstract)
[7]                 Dowd, P. A. and Onur, A. H., (1993) “Open pit optimization - part 1: optimal open pit design”, Trans. Instn Min. Metall. (Sect. A: Min. industry), No. 102, p.p. A95-A104.
[8]                 Godoy, M., Dimitrakopoulos, R.G., (2004). Managing risk and waste mining in long-term production scheduling. SME Trans. 316.
[9]                 Ramazan, S., Dimitrakopoulos, R.G., (2004). Traditional and new MIP models for production scheduling with in-situ grade variability. Int. J. Min. Reclam. Environ. 18 (2), 85–98.
[10]              Meagher, C., Abdel Sabour, S.A., Dimitrakopoulos, R.G., (2009). Pushback design of open pit mines under geological and market uncertainties. Orebody Model. Strat. Mine Plan. Spectr. Ser. AusIMM 2.
[11]              Dimitrakopoulos, R.G., Abdel Sabour, S.A., (2011). Incorporating geological and market uncertainties and operational flexibility into open pit mine design. J. Min. Sci. 47 (2), 191–201.
[12]              Gholamnejad, J., Moosavi, E., (2012). A new mathematical programming model for longterm production scheduling considering geological uncertainty. J. S. Afr. Inst. Min. Metall 112, 77–81.
[13]              Montiel, L., Kawahata, K., Dimitrakopoulos, R.G., (2016). Globally optimising open-pit and underground mining operations under geological uncertainty. Trans. Inst. Min. Metall.: Sec. A, Mining Technol. 125 (1), 2–14.
[14]              Zhang, J., Dimitrakopoulos, R.G., (2018). Stochastic optimization for a mineral value chain with nonlinear recovery and forward contracts. J. Oper. Res. Soc. 69 (6), 864–875.
[15]              Clement, S., Vagenas, N., (1994). Use of genetic algorithms in a mining problem. Int. J. Surf. Min. Reclam. Environ. 8 (4), 131–136.
[16]              Pendharkar, P., Rodger, J., (2000). Nonlinear programming and genetic search application for production scheduling in coal mines. Ann. Oper. Res. 95 (1–4), 251–267.
[17]              Osanloo, M., Karimi, B., Gholamnejad, J., (2007). A chance-constrained programming approach for open pit long-term production scheduling in stochastic environments. Trans. Inst. Min. Metall.: Sec. A, Mining Technol. 116 (2), 58–66.
[18]              Sattarvand, J., Niemann-Delius, C., (2013). A new metaheuristic algorithm for long-term open-pit production planning. Arch. Min. Sci. 58 (1), 107–118.
[19]              Thomas, G.S., (1996). Optimization and scheduling of open pits via genetic algorithms and simulated annealing. In: Proceedings of the 1st International Symposium on Mine Simulation. Balkema Publisher, pp. 44–59.
[20]              Sauvageau, M., Kumral, M., (2018). Genetic algorithms for the optimisation of the Schwartz–Smith two-factor model: a case study on a copper deposit. Int. J. Min. Reclam. Environ. 32 (3), 163–181.
[21]              Leite, A., Dimitrakopoulos, R.G., (2007). Stochastic optimisation model for open pit mine planning: application and risk analysis at copper deposit. Trans. Inst. Min. Metall.: Sec. A, Mining Technol. 116 (3), 109–118.
[22]              Goodfellow R.C., Dimitrakopoulos R., (2016). Global optimization of open pit mining complexes with uncertainty; Applied Soft Computing 40 (2016) 292–304, (http://dx.doi.org/10.1016/j.asoc.2015.11.038)
[23]              Groeneveld B. Topal E., Leenders B., (2019). Examining system configuration in an open pit mine design; Resources Policy 63 (2019) 101438, (https://doi.org/10.1016/j.resourpol.2019.101438)
[24]              Blom M., Pearce A.R., Stuckey P.J., (2018) Short-Term Planning for Open Pit Mines: A Review; International Journal of Mining Reclamation and Environment; (DOI: 10.1080/17480930.2018.1448248)
[25]              Chanda, E. and F. Wilke (1992). An EPD model of open pit short term production scheduling optimization for stratiform orebodies. In APCOM, pp. 759-768.
[26]              Rehman S.U., and Asad M.W.A., (2010) A Mixed-Integer Linear Programming (MILP) Model for Short-Range Production Scheduling of Cement Quarry Operations. Asia-Pacific Journal of Operational Research, Vol. 27, No. 3 (2010) pp. 315–333. (World Scientific Publishing Co. & Operational Research Society of Singapore - DOI: 10.1142/S0217595910002727).
[27]              Dimitrakopoulos R., Jewbali A., (2013) Joint stochastic optimisation of short and long term mine production planning: method and application in a large operating gold mine. Mining Technology, Vol. 122, No. 2, pp. 110-123.
[28]              Upadhyay Sh.P., Askari-Nasab H., (2017) Simulation and optimization approach for uncertainty-based short-term planning in open pit mines; International Journal of Mining Science and Technology xxx (2017) xxx–xxx (https://doi.org/10.1016/j.ijmst.2017.12.003).
[29]              Lipovetzky, N., C. N. Burt, A. R. Pearce, and P. J. Stuckey (2014). Planning for mining operations with time and resource constraints. In ICAPS, pp. 404-412.
[30]              Burt, C. N., N. Lipovetzky, A. R. Pearce, and P. J. Stuckey (2015). Scheduling with fixed maintenance, shared resources and nonlinear feedrate constraints: A mine planning case study. In CPAIOR, pp. 91-107.
[31]              L’Heureux G., Gamache M., Soumis F., (2013) Mixed integer programming model for short term planning in open-pit mines; Mining Technology, Vol. 122, No 2, p. 101-109. (DOI 10.1179/1743286313Y.0000000037)
[32]              Bakhshai M.H., (1983). Detailed Exploration of Block 1 of Esteghlal Mine, Non-Metallic Material Co, 200 pages.
[33]              Azimi A., (2018). Open pit mine long term production scheduling optimization considering stockpile option; PhD. Thesis, Mining and Metallurgy Engineering Department. Yazd University.
[34]              Ramazan S., Dimitrakopoulos R., (2013) Production scheduling with uncertain supply: a new solution to the open pit mining problem. Optim Eng, 14:361-380 (http://dx.DOI:10.1007/s11081-012-9186-2).