زون‌بندی مخزنی بر اساس داده‌های پتروگرافی و پتروفیزیکی (مطالعه موردی: بخش بالایی سازند سروک در یکی از میدان‌های نفتی ناحیه دشت آبادان، جنوب غربی ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اکتشاف نفت، دانشکده مهندسی نفت، دانشگاه سمنان، سمنان، ایران

2 گروه صنایع گاز، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه سمنان، سمنان، ایران

3 گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

4 شرکت مهندسی و توسعه نفت، تهران، ایران

10.29252/anm.2021.16415.1491

چکیده

سازند سروک در کرتاسه میانی به سن آلبین – تورونین با ترکیب سنگ­شناسی غالب سنگ‌آهک و آهک دولومیتی یکی از مهم‌ترین مخازن نفتی در جنوب غربی ایران به شمار می­رود. در این مطالعه به‌منظور ارزیابی کیفیت مخزنی بخش بالایی سازند سروک در یکی از میدان‌های نفتی ناحیه دشت آبادان از نتایج مطالعات مقاطع نازک میکروسکوپی، داده­های تخلخل-تراوایی مغزه و نمودارهای پتروفیزیکی یک چاه استفاده‌ شده است. بر اساس مطالعات مقاطع میکروسکوپی، سازند سروک در 5 کمربند رخساره­ای پهنه جزر و مدی، لاگون، پشته سدی، رمپ میانی و رمپ خارجی نهشته شده­ است. انحلال، شکستگی، سیمانی شدن، تراکم و دولومیتی­شدن از مهم‌ترین فرآیندهای دیاژنزی مؤثر بر تغییرات کیفیت مخزنی این سازند به‌حساب می­روند. رخساره­های الکتریکی (EF) بر مبنای نمودارهای چاه­پیمایی و آنالیز خوشه­بندی سلسله‌مراتبی تعیین ‌شده است. با استفاده از روش­های پتروفیزیکی شاخص زون جریانی (FZI) و لورنز اصلاح­شده بر مبنای چینه­شناسی (SMLP) به ترتیب 5 و 7 واحد جریانی تعیین شد. درنهایت، مطالعات مقاطع میکروسکوپی، رخساره­های الکتریکی و واحدهای جریانی هیدرولیکی در چارچوب زون‌بندی مخزنی به روش لورنز بررسی‌شده و ارتباطات آن‌ها مورد بررسی و تفسیر قرار گرفته است. درنتیجه، رخساره­های دانه پشتیبان مربوط به کمربندهای رخساره­ای پشته سدی و رمپ میانی (به سمت خشکی) و فرآیندهای دیاژنزی افزاینده کیفیت مخزنی مانند انحلال و شکستگی بهترین زون‌های مخزنی را تشکیل داده­اند. در طرف مقابل، رخساره­های گل پشتیبان کمربندهای رخساره­ای رمپ میانی (به سمت دریای باز) و رمپ خارجی، پهنه جزر و مدی و لاگون و فرآیندهای دیاژنزی کاهنده مانند سیمانی­شدن، تراکم و دولومیتی­شدن به­عنوان زون‌های ضعیف یا غیر مخزنی معرفی شده­اند. به‌طورکلی رخساره­های رسوبی و بعدازآن دیاژنز، مهم‌ترین عامل کنترل­کننده گسترش زون‌های مخزنی در بخش بالایی سازند سروک محسوب می‌شوند. نتایج حاصل از این مطالعه نشان داد که زون‌بندی مخزنی بر اساس روش لورنز اصلاح‌شده بر مبنای چینه­شناسی (SMLP) می‌تواند در تفسیر ناهمگنی­های مخزنی بخش بالایی سازند سروک در مقیاس میدانی مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reservoir Zonation Based on Petrographic and Petrophysical Data (Case Study: Upper Part of Sarvak Formation in an Oilfield in Abadan Plain, SW Iran)

نویسندگان [English]

  • Arad Kiani 1
  • Mohammad Hossein Saberi 1
  • Bahman Zare Nejad 2
  • Elham Asadi Mehmandosti 3
  • Nasim Rahmani 4
1 Semnan University
2 petroleum/ Semnan university
3 Kharazmi University
4 NIOC
چکیده [English]

Summary
In this study, results of microscopic studies on thin sections, core porosity data, and petrophysical charts along a well were used to evaluate the reservoir quality of the upper part of the Sarvak Formation in one of the oil fields in Abadan Plain. This research showed that SMLP-based zonation can be applied on a field scale as it could appropriately represent the heterogeneity of the Sarvak reservoir at a large scale.
 
Introduction
The main purpose of the study is to investigate the reservoir quality of the upper part of Sarvak Formation in an oilfield within Abadan Plain by analyzing the facies and sedimentary environment, pore system, diagenetic processes, electrofacies, and flow units. To this end, a set of microscopic thin section data, core porosity data, and well logs were employed as input data. The main advantages of the proposed methodology include its ability to predict and justify changes in reservoir quality, its contribution to reservoir modeling and reservoir zonation, and the resultant reduction of the drilling cost in the studied oilfield.
 
Methodology and Approaches
 The set of input data used in this study included 269 m of drilling cores, 694 thin sections prepared from the cores, porosity-permeability data from 548 core plug samples, and petrophysical logs including gamma, neutron, sonic, density, and resistivity reading at a key well in an oilfield within Abadan Plain, southwestern Iran. Results of petrographic studies (i.e., sedimentary texture, facies belts, diagenetic processes, and pore systems) and electrofacies were incorporated into a framework for identifying the zones introduced by SMLP, and the relationship between them was examined and interpreted.
 
Results and Conclusions
Based on the microscopic studies, it was found that the formation was composed of 5 facies belts, namely tidal flat zone, lagoon, shoal, middle ramp, and outer ramp facies were deposited. Dissolution, fracturing, cementation, compaction, and dolomitization were identified as the most important diagenetic processes affecting the reservoir quality in Sarvak Formation. Electrofacies (EF) were determined based on well charts and hierarchical clustering analysis. Using two petrophysical methods, namely, flow zone index (FZI) and stratigraphic modified Lorenz plot (SMLP), we ended up detecting 5 and 7 flow units, respectively. Finally, microscopic analysis of thin sections and investigation of electrofacies and hydraulic flow units in the framework of reservoir zonation by using the SMLP were devised to review the zonations and interpret them appropriately. As a result, the grain-supported facies related to the shoal and the middle ramp environments and the diagenetic processes enhancing the reservoir quality (e.g., dissolution and fracturing) were found to lead to the best-reservoir quality zones. On the other hand, the poor reservoir quality zones were found to be a result of the mud-supported facies of the middle and outer ramp, tidal flat, and lagoon environments, and adverse diagenetic processes such as cementation, compaction, and dolomitization. Results of this study showed that reservoir zonation using the SMLP can be of help in the interpretation of reservoir heterogeneities in the upper part of the Sarvak Formation at the field scale.

کلیدواژه‌ها [English]

  • petrography
  • reservoir zonation
  • reservoir quality
  • flow units
  • electrofacies

سنگ­های کربناته یکی از بهترین و مهم‌ترین مخازن و ذخایر نفتی در جهان محسوب می­شوند ]1[. این مخازن در مقابل مخازن ماسه­سنگی دارای ناهمگنی و پیچیدگی­های زمین­شناسی بیشتری هستند که به‌وضوح در نحوه توزیع تخلخل و تراوایی آن‌ها مشاهده می­شود. مدل‌سازی ساختاری و زمین‌شناسی در مدیریت مخزن برای تجزیه‌وتحلیل ناهمگنی مخزن صورت می­گیرد، زیرا ذخیره و جریان سیالات را در محیط‌های متخلخل کنترل می­کند ]2[. خواص مخزنی توسط فرآیندهای دیاژنزی و رسوب­شناسی کنترل می­شوند، به همین علت مدل‌سازی مخازن کربناته دشوار است ]3[. ناهمگنی کربناته­ها به این صورت است که احتمال دارد قسمتی از سنگ در مرحله رسوب‌گذاری ویژگی مخزنی پیدا کند اما در مرحله دیاژنزی این ویژگی را از دست دهد و یا بالعکس آن به وقوع بپیوندد ]5-4،1[. مطالعه مقاطع نازک میکروسکوپی شامل رخساره­های رسوبی و فرآیندهای دیاژنزی نخستین و اساسی‌ترین قدم در تجزیه‌وتحلیل مخازن کربناته است ]1[. نوع تخلخل، هندسه گلوگاه منافذ، توزیع اندازه حفره­ها و تراوایی تحت تأثیر محیط­های رسوبی و فرآیندهای دیاژنزی هستند ]6[. تعیین گونه­های سنگی با روش­های مختلف یکی از مراحل شناسایی ویژگی­های مخزنی و پهنه‌بندی­مخزنی قلمداد می­شود ]7[. داده­های پتروفیزیکی به همراه داده­های زمین‌شناسی می­توانند اطلاعات جامع و دقیق­تری از ویژگی‌های مخزنی در اختیار پژوهشگران قرار دهند ]8[.

 
[1]                 Lucia, F. J. (2007) Carbonate Reservoir Characterization An Integrated Approach,. Second Edition. Springer-Verlag, Berlin Heidelberg, New York, 55(6): 336.
[2]                 Shiri, Y., Moradzadeh, A., Ghavami-Riabi, R., and Chehrazi, A. (2012). “Integration of 2D seismic and well log data for petrophysical modeling and gas reserve estimation in appraisal state of petroleum exploration. ” Journal of Seismic Exploration 21(3): 231-246.
[3]                 Rahimpour-Bonab, H. (2007). “A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity.” J. Pet. Sci. Eng., 58(1–2): 1–12.
[4]                 Moore, C. H. (2013). “Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework.” Elsevier, Amsterdam: 370.
[5]                 Sfidari, E., Kadkhodaie-Ilkhchi, A., Rahimpour-Bbonab, H., and Soltani, B. (2014). “A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: A case study from the South Pars gas field, the Persian Gulf basin.” Journal of Petroleum Science and Engineering, 121: 87–102.
[6]                 Mehrabi, H., Ranjbar-Karami, R., and Roshani-Nejad, M. (2019). “Reservoir rock typing and zonation in sequence stratigraphic framework of the Cretaceous Dariyan Formation, Persian Gulf.” Carbonates and Evaporites, 34(4): 1833–1853.
[7]                 Kadkhodaie-Ilkhchi, R., Rezaee, R., Moussavi-Harami, R., and Kadkhodaie -Ilkhchi, A. (2013). “Analysis of the reservoir electrofacies in the framework of hydraulic flow units in the Whicher Range Field, Perth Basin, Western Australia.” Journal of Petroleum Science and Engineering, 111: 106–120.
[8]                 Abbaszadeh, M. Fujii, H., and Fujimoto, F. (1996). “Permeability prediction by hydraulic flow units - Theory and applications.” SPE Formation Evaluation, 11(4): 263–271.
[9]                 Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., and Keelan, D. K. (1993). “Enhanced Reservoir Description. Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells.” Society of Petroleum Engineers Annual Conference, 205–220.
[10]              Gunter, G. W., Finneran, J. M., Hartmann, D. J., and Miller, J. D. (1997). “Early determination of reservoir flow units using an integrated petrophysical method.” Proceedings - SPE Annual Technical Conference and Exhibition, 373–380.
[11]              Perez H. H., Datta-Gupta, A., and Mishra, S. (2003). “The Role of Electrofacies, Lithofacies, and Hydraulic Flow Units in Permeability Predictions from Well Logs: A Comparative Analysis Using Classification Trees.” Proc. - SPE Annu. Tech. Conf. Exhib., 2191–2201.
[12]              Serra, H. T., and Abbott, O. T. (1982). “The contribution of logging data to sedimentology and stratigraphy.” Soc. Pet. Eng. J., 22: 117-131.
[13]              Kadkhodaie Ilkhchi, A., Rezaee, M., and Moallemi, S. A. (2006). “A fuzzy logic approach for estimation of permeability and rock type from conventional well log data.” Journal of Geophysics and Engineering, 3(4): 356.
[14]              Tavakoli V., and Amini, A. (2006). “Application of Multivariate Cluster Analysis in Logfacies Determination and Reservoir Zonation, Case Study of Marun Field, South of Iran.” Journal of Science (University of Tehran), 32(21): 69–75.
[15]              Moradi, M., Moussavi-Harami, R., Mahboubi, A., Khanehbad, M., and Ghabeishavi, A. (2017). “Rock typing using geological and petrophysical data in the Asmari reservoir, Aghajari Oilfield, SW Iran.” Journal of Petroleum Science and Engineering, 152: 523–537.
[16]              Enayati-Bidgoli, A. H., Rahimpour-Bonab, H., and Mehrabi, H. (2014). “Flow unit characterisation in the permian-triassic carbonate reservoir succession at South Pars Gasfield, Offshore Iran.” Journal of Petroleum Geology, 37(3): 205–230.
[17]              Beiranvand, B. (2007). “Mapping and Classifying Flow Units in the Upper Part of the Mid‐Cretaceous Sarvak Formation (Western Dezful Embayment, Sw Iran.” Journal of Petroleum,30: 357–373.
[18]              Esrafili-Dizaji, B., Rahimpour-Bonab, H., Mehrabi, H. Afshin, S., Kiani Harchegani, F., and Shahverdi, N. (2015). “Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation, SW Iran.” Facies, 61(3): 1-25.
[19]              Hollis C., and Sharp, I. (2011). “Albian-Cenomanian-Turonian carbonate-siliciclastic systems of the Arabian Plate: advances in diagenesis, structure and reservoir modelling: introduction.” Petroleum Geoscience, 17: 207–209.
[20]              Rahimpour-Bonab, H., Mehrabi, H., Enayati-Bidgoli, A. H., and Omidvar, M. (2012). “Coupled imprints of tropical climate and recurring emergence on reservoir evolution of a mid Cretaceous carbonate ramp, Zagros Basin, southwest Iran.” Cretaceous Research, 37: 15–34.
[21]              Rahimpour‐Bonab, H., Mehrabi, H., Navidtalab A. H, Izadi‐Mazidi, E. (2012). “Flow Unit Distribution and Reservoir Modelling in Cretaceous Carbonates of the Sarvak Formation, Abteymour Oilfield.” Journal of Petroleum Geology, 35: 213–236.
[22]              Taghavi, A. A., Mork, A., and Emadi, M. A. (2006). “Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran.” Petroleum Geoscience, 12(2): 115–126.
[23]              Hajikazemi, E., Al-Aasm, I. S., and Coniglio, M. (2010). “Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, southwestern Iran.” Geological Society, London, Special Publications, 330(1): 253–272.
[24]              Hajikazemi, E., Al-Aasm, I. S., and Coniglio, M. (2012). “Chemostratigraphy of cenomanian-turonian carbonates of the sarvak formation, Southern Iran.” Journal of Petroleum Geology, 35(2): 187–205.
[25]              Hajikazemi, E., Al-Aasm, I. S., and Coniglio, M. (2017). “Diagenetic history and reservoir properties of the Cenomanian-Turonian carbonates in southwestern Iran and the Persian Gulf.” Marine and Petroleum Geology, 88: 845–857.
[26]              Malekzadeh, H., Daraei, M., and Bayet-Goll, A. (2020). “Field-scale reservoir zonation of the Albian–Turonian Sarvak Formation within the regional-scale geologic framework: A case from the Dezful Embayment, SW Iran.” Marine and Petroleum Geology, 121: 1-20.
[27]              Soleimani Asl. S., and Aleali, M. (2016). “Microfacies Patterns and Depositional Environments of the Sarvak Formation in the Abadan Plain, Southwest of Zagros, Iran.” Open Journal of Geology, 6(3): 201–209.
[28]              Faramarzi, S., Rahimpour-Bonab, H., and Ranjbaran, M., (2018). “Flow units characterization of the sarvak Formation in a sequence stratigraphic framework: a case study from an oil-field in the Abadan Plain, SW Iran.”Applied Sedimentology, 6(12), 25-39 (In persian).
[29]              Assadi, A., Honarmand, J., Rahmani, A., and Raisi, A. R. (2016). “Recognition and interpretation of depositional and diagenetic facies from log facies concept a case study from the Sarvak reservoir in a giant oil fields, SW Iran.” Applied Sedimentology, 3(6), 103-119 (In persian).
[30]              Aleali, S. M. (2017). “Facies analysis and depositional sequences of the middle Cretaceous Sarvak Formation in the northwest of Behbahan, Zagros basin, Iran.” Episodes, 40(4): 279–293.
[31]              Asadi Mehmandosti, E., Adabi, M. H., and A. D. Woods, (2013). “Microfacies and geochemistry of the Middle Cretaceous Sarvak Formation in Zagros Basin, Izeh Zone, SW Iran.” Sedimentary Geology, 293: 9–20.
[32]              Assadi, A., Honarmand, J., Moallemi, S. A., and Abdollahie-Fard,I.­(2016).­“Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran.” Facies, 62(4): 1-22.
[33]              Assadi, A., Honarmand, J., Moallemi, S. A., and Abdollahie-Fard, I. (2018). “An integrated approach for identification and characterization of palaeo-exposure surfaces in the upper Sarvak Formation of Abadan Plain, SW Iran.” Journal of African Earth Sciences, 145: 32–48.
[34]              Assadi, A., Honarmand, J., Moallemi, S. A. and Abdollahie Fard, I. (2016). “Flow Units Identification of the sarvak Carbonate Reservoir, a case study from an oil Field, SW Iran. ” Petroleum Research, 91, 66-82 (In persian).
[35]              Ghabeishavi, A., Vaziri-Moghaddam, H., and Taheri, A. (2009). “Facies distribution and sequence stratigraphy of the Coniacian - Santonian succession of the Bangestan Palaeo-high in the Bangestan Anticline, SW Iran.” Facies, 55(2): 243–257.
[36]              Lapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernandez, N., Romaire, I., and Hunt, D. (2011). “From outcrop to 3D modelling: A case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran.” Pet. Geosci., 17(3): 283–307.
[37]              Abdollahie Fard, I. A., Braathen, A., Mokhtari, M., and Alavi, S. A. (2006). “Interaction of the Zagros Fold-Thrust Belt and the Arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran.” Petroleum Geoscience, 12(4): 347–362.
[38]              Alavi, M. (2007). “Structures of the Zagros fold-thrust belt in Iran.” American Journal of Science, 307(9): 1064–1095.
[39]              Du, Y., Chen, J., Cui, Y., Xin, J., Wang, J., Li, Y. Z., & Fu, X., (2006). “Genetic mechanism and development of the unsteady Sarvak play of the Azadegan oil field, southwest of Iran.” Petroleum Science, 13(1),34–51.
[40]              Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., Simmons, M. D., (2001). “Arabian Plate Sequence Stratigraphy.” GeoArabia, Special Publication 2: 371.
[41]              James G. A., and Wynd, J. G. (1965). “Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area.” Bulletin of the American Association of Petroleum Geologists, 49: 2182–2245.
[42]              Van Buchem, F. S. P., Simmons, M. D., Droste, H. J., and Davies, R. B. (2011). “Late Aptian to Turonian stratigraphy of the eastern Arabian Plate - depositional sequences and lithostratigraphic nomenclature.” Pet. Geosci., 17(3): 211–222.
[43]              Bordenave M. L., and Hegre, J. A. (2005). “The influence of tectonics on the entrapment of oil in the Dezful Embayment, Zagros Foldbelt, Iran.” Journal of Petroleum Geology, 28(4): 339–368.
[44]              Mehrabi, H., Rahimpour-Bonab, H., Hajikazemi, E., and Jamalian, A. (2015). “Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf, Iran.” Facies, 61(4): 147–167.
[45]              Motiei, H. (1993) “Stratigraphy of Zagros. Geological Survey of Iran.” 572 (In Persian)
[46]              Christian, L. (1997). “Cretaceous subsurface geology of the Middle East region.” GeoArabia, 2(3): 239–256.
[47]              Dickson, J. (1966). “Carbonate Identification and Genesis as Reveled by Staining.” Journal of Sedimentary Petrology, 36(2): 491–505.
[48]              Dunham, R. J. (1962). “Classification of carbonate rocks according to depositional texture, in W. E. Ham, ed., Classification of carbonate rocks.” American Association of Petroleum Geologists Memoir 1: 108–121.
[49]              Embry A. F., and Klovan, J. E. (1971). “A Late Devonian reef tract on northeastern Banks Island, Northwest Territories, Canada.” Bulletin of Canadian Petroleum Geology, 19: 730–781.
[50]              Flugel, E. (2010). “Microfacies of Carbonate Rocks, Analysis, Interpretation and Application (2th edition).” Springer, Berlin Heidelberg, New York: 984.
[51]              Ahr W. M. (2008). “Geology of Carbonate reservoirs.” John Wiley and sons, Chichester: 296.
[52]              Mahdi T. A., and Aqrawi, A. A. M. (2014). “Sequence stratigraphic analysis of the mid-cretaceous mishrif formation, southern Mesopotamian Basin, Iraq.” Journal of Petroleum Geology, 37(3): 287–312.
[53]              Mehrabi H., and Rahimpour-Bonab, H. (2014). “Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian-early Turonian carbonate reservoirs, Dezful Embayment, SW Iran.” Facies, 60(1): 147–167.
[54]              Kiani, A., Saberi, M. H., Zarenezhad, B., Asadi Mehmandosti, E. and Rahmani, N. (2019), “Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain.” Iranian Journal of Petrolum Geology, 16, 78-103 (In persian).
[55]              Adabi, M. H. (2009). “Multistage dolomitization of upper jurassic mozduran formation, kopet-dagh basin, N.E. Iran.” Carbonates and Evaporites, 24(1): 16–32.
[56]              Kadkhodaie A., and Kadkhodaie, R. (2018). “A Review of Reservoir Rock Typing Methods in Carbonate Reservoirs: Relation between Geological, Seismic, and Reservoir Rock Types.” Petroleum Engineering Iranian Journal of Oil & Gas Science and Technology, 7(4): 13–35.
[57]              Castillo, S., Gutierrez, E., and J, M., Hadi, A, (1997). “Sensitivity Analysis in Discrete Bayesian Networks.” Man Cybern., 26: 412–423.
[58]              Loo, A. H. B., Tan, H. T. W., Kumar, P. P., and Saw, L. G. (2001). “Intraspecific variation in Licuala glabra Griff. (Palmae) in Peninsular Malaysia - A morphometric analysis.” Biol. J. Linn. Soc., 72(1): 115–128.
[59]              Tiab D., and Donaldson, E. C. (2015). “Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties: Fourth Edition.” Gulf Publishing company houston, Texas: 950.
[60]              Gomes, J. S., Ribeiro, M. T., Strohmenger, C. J., Negahban, S., and Kalam, M. Z. (2008). “Carbonate reservoir rock typing - The link between geology and SCAL.” Soc. Pet. Eng. - 13th Abu Dhabi Int. Pet. Exhib. Conf. ADIPEC 2008, 3: 1643–1656.
[61]              Rahimpour-Bonab, H., Enayati-Bidgoli, A. H., Navidtalab, A., and Mehrabi, H. (2014). “Appraisal of intra reservoir barriers in the Permo-Triassic successions of the central Persian gulf, offshore Iran.” Geologica Acta, 12(1): 87–107.