تصحیح سیستم طبقه‌بندی امتیاز توده‌سنگ با استفاده ‌از الگوریتم‌های‌ خوشه‌بندی ‌‌k-means و ‌fuzzy c-means

نوع مقاله: مقاله پژوهشی

نویسندگان

بخش معدن، مجتمع آموزش عالی زرند، دانشگاه شهید باهنر کرمان

10.17383/S2251-6565(15)940917-X

چکیده

با توجه به اهمیت و کاربرد سیستم طبقه‌بندی امتیاز توده‌سنگ در مهندسی ‌سنگ، هدف از این مقاله تصحیح کلاس‌های نهایی این سیستم طبقه‌بندی با استفاده از الگوریتم‌های ‌خوشه‌بندی ‌k-means و fuzzy c-means (FCM)‌ است. در سیستم طبقه‌بندی امتیاز توده‌سنگ داده‌ها توسط یک سری از اطلاعات اولیه بر مبنای نظریات و قضاوت‌های تجربی طبقه‌بندی می‌شوند ولی با کاربرد الگوریتم‌های خوشه‌بندی در این سیستم ‌طبقه‌بندی، کلاس‌بندی داده‌ها بعد از مراحل تحلیل ‌خوشه‌ای انجام می‌شود، در نتیجه موجب تفکیک‌پذیری مناسب کلاس‌های نهایی سیستم ‌طبقه‌بندی امتیاز توده‌سنگ و رفع ‌ابهامات حاصل از معیار‌های‌ زبانی آن می‌شود. جهت اعتبار‌سنجی الگوریتم خوشه‌بندی k-means از روش سیلهوته(SC) و اعتبار‌سنجی ‌الگوریتم خوشه‌بندی ‌FCM از چهار روش: ضریب‌ توزیع ‌‌پارتیشن (PC)، روش آنتروپی (CE)، روش ‌‌فوکویاما ‌و ‌سوگنو (FS) و ضریب ‌زی ‌و ‌بنی (XB) استفاده شده است. با‌توجه به نتایج اعتبار‌سنجی هر یک از الگوریتم‌های خوشه‌بندی، در نهایت مشخص شد که الگوریتم خوشه‌بندی FCM به دلیل شرایط عدم قطعیت در تعیین کلاس‌های سیستم طبقه‌بندی توده‌سنگ دارای نتایج بهتر و مناسب‌تری نسبت به الگوریتم خوشه‌بندی k-means است. این نتایج در مورد داده‌های برداشت شده از آنومالی B معادن سنگ آهن سنگان نشان می‌دهد که تکنیک مورد استفاده در این مقاله از اهمیت ویژه‌ای جهت ارزیابی کیفیت توده‌سنگ برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modification of rock mass rating classification system by k-means and fuzzy c-means clustering algorithms

نویسندگان [English]

  • Zakaria Jalali
  • Seyyed Mehdi Mousavi Nasab
Higher Educational Complex of Zarand, Shahid Bahonar University of Kerman
چکیده [English]

Given the importance of the rock mass rating classification system in rock engineering, the aim of this paper is to improve final classes of this classification system using k-means and fuzzy c-means clustering algorithms. The data classification in the rock mass rating classification system were allocated to certain classes via a set of initial information based on the opinions and judgments of experience, which the use of clustering algorithms in this system of classification, dataset were divided into specific classes after going through the stages of clustering analysis, therefore resulting in clarification of the final rock mass rating classification systems and removal of uncertainties from the linguistic criteria. Silhouette coefficient (SC) method was used for validation k-means clustering algorithm. Furthermore, for validation of FCM clustering algorithm, four validation methods including partition distribution coefficient (PC), clustering entropy (CE), Fukuyama and Sugeno (FS) and Xie and Beni index (XB) were used. It becomes clear that due to uncertainty condition on determination of rock mass rating clustering system classes, FCM clustering algorithms yields better results than k-means clustering algorithm. Results of data extracted from Anomaly B of Sangan iron mines indicated that the technique used in this paper is of high importance in rock mass quality.

کلیدواژه‌ها [English]

  • rock mass rating classification system
  • k-means and FCM clustering algorithms
  • Clustering validation methods
  • Anomaly B of Sangan iron mines
[1] Bieniawski, Z. T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons.
[2] Singh B, Goel R. K. (1999). Rock mass classification: a practical approach in civil engineering (Vol. 46). Elsevier.
[3] Şen, Z, Sadagah, B. H. (2003). Modified rock mass classification system by continuous rating. Engineering Geology, 67(3), 269-280.
[4] Keller F, Clustering. (2000). Computer University Saarland’s. Tutorial Slides.
[5] Aydin, A. (2004). Fuzzy set approaches to classification of rock masses. Engineering Geology, 74(3), 227-245.
[6] Bezdek, J. C., Ehrlich, R., Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2), 191-203.
[7] Tomás, R., Delgado, J., Serón, J. B. (2007). Modification of slope mass rating (SMR) by continuous functions. International Journal of Rock Mechanics and Mining Sciences, 44(7), 1062-1069.
[8] BHP Engineering Report. (1992). Mine Study geotechnical Report. Ore body B. Joint venture-Sangan.
[9] BHP Engineering Report. (1992) Mine Study geotechnical Report, Ore body B and C North. Joint venture-Sangan.
[10] AMEC Engineering Report. (2008). Mining Report of anomalies B and C North. (148831).
[11] AMEC Engineering Report. (2008). Geology model and model update. (148831).
[12] MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1(14), 281-297.
[13] Zadeh L.A.(1990). Fuzzy sets and systems, International Journal of General Systems; 17(2-3):129-138.          
[14] Kaufman, L., Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis (Vol. 344). John Wiley & Sons.
[15] Bezdek, J. C. (1973). Cluster validity with fuzzy sets.
[16] Xie, X. L., Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on pattern analysis and machine intelligence, 13(8), 841-847.
[17] Fukuyama, Y., Sugeno, M. (1989, July). A new method of choosing the number of clusters for the fuzzy c-means method. In Proc. 5th Fuzzy Syst. Symposium (Vol. 247, pp. 247-250).