مطالعه عددی رشد ترک در محیط متخلخل: اثر پارامترهای تخلخل بیضی‌شکل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مواد، دانشکده مهندسی، دانشگاه زنجان، زنجان، ایران

10.29252/anm.2021.15697.1477

چکیده

شکل و مکان تخلخل، تأثیر بسزایی بر رشد ترک در مواد متخلخل دارد. وقتی نمونه تحت تنش خارجی قرار می­گیرد، به دلیل تمرکز تنش در اطراف این تخلخل­ها، ترک­های کششی ایجادشده و با پیوستن آن‌ها به یکدیگر، شکست نهایی در نمونه به وجود می­آید. با توجه به مشکلات آزمایشگاهی جهت مطالعه رشد ترک در مقیاس تخلخل، محاسبات عددی این رفتارها راه­کار بسیار مناسبی برای دستیابی به درک صحیحی از نحوه ایجاد و رشد ترک در این مواد به شمار می­رود. ازاین‌رو، در سال­های اخیر استفاده از روش اجزا محدود توسعه‌یافته که در آن نیاز به مش­بندی مجدد ناحیه­ی اطراف ترک رفع شده، گسترش زیادی یافته است. بااین‌وجود به دلیل ساختار پیچیده فضای متخلخل، حتی در مدل­های عددی، شکل این تخلخل­ها اغلب به‌صورت دایره­ای در نظر گرفته می­شوند. در این پژوهش، تأثیر شکل، مکان و نحوه چیدمان تخلخل­های بیضی‌شکل بر رشد ترک به‌صورت عددی مدل‌سازی می­گردد. این تخلخل­ها در مقابل و جوانب ترک قرار داده‌شده و در هر مرحله نحوه توزیع تنش، تغییرات فاکتور شدت تنش و مقاومت بیشینه بررسی‌شده‌اند. نتایج نشان می­دهد که در صورت برابری اندازه‌ تخلخل‌ها، در حالتی که تخلخل مقابل ترک و به شکل بیضی قائم باشد، اثر تخریبی آن حدود 20 درصد بیشتر از تخلخل بیضی‌شکل افقی است. همچنین، هنگامی‌که تخلخل در جوانب ترک قرار دارد، با افزایش زاویه زاویه­ی بین محور افقی با راستای قطر بزرگ بیضی (α)، فاکتور شدت تنش از 1 به 94/0 کاهش‌یافته و سبب کاهش انتشار ترک در نمونه­ی متخلخل می‌شود. در ادامه، با تعریف زاویه­ی زاویه بین محور افقی با خط واصل مراکز دو تخلخل به نام β، تأثیر شکل تخلخل و نحوه قرارگیری آن بر رشد ترک در مدل‌های پیچیده‌تر (مدل­های حاوی دو تخلخل بیضی‌شکل) مورد ارزیابی قرارگرفته است. با افزایش زاویه α و β از صفر به نود درجه، مقاومت بیشینه نمونه 12/18 درصد کاهش و مقدار تنش فون میسز از 154/0 به 922/0 مگاپاسکال افزایش می‌یابد. بااین‌حال، نتایج نشان‌دهنده­ آن است که تأثیر زاویه β در رشد ترک بیشتر از زاویه α است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of crack growth in porous media: Effect of elliptical porosity parameters

نویسندگان [English]

  • Mohammad Rezanejad
  • Seyed Ahmad Lajevardi
  • Sadegh Karimpouli
M.Sc. in rock mechanic, Engineering Faculty, University of Zanjan, Zanjan, Iran
چکیده [English]

Summary
Recent developments in eXtended Finite Element Method (XFEM) opened new avenues through crack propagation problems. However, in most researches, exact porosities are not considered or are just replaced with some circular pores. This means the effects of the shape, location, and arrangement of the porosities are less evaluated. In this study, by considering the porosity as an elliptical pore, parameters such as elliptical shape, relative location, and arrangement of pores are studied. The results revealed that this kind of considerations can improve the accuracy of crack growth modeling through porous media.
 
Introduction
The shape and location of a pore have a significant effect on the cracks' growth and propagation in porous media. Due to the concentration of stress around these discontinuities, tensile cracks are created and coalesced leading to the final failure in the sample. Since these kinds of tests in pore-scale are practically hard to implement in the laboratory, numerical computation of these behaviors is of great importance to correctly understand this phenomenon. In recent years, the use of XFEM, which eliminates the need for remeshing along the crack path, has been extensively developed and used by many researchers. However, due to the complex shape of the porous structure, even in numerical modeling, they either are not considered or their shape is assumed to be circular. We, in this study, will go a step forward in this limitation by assuming an elliptic shape for porosities.
 
Methodology and Approaches
In this article, the effect of shape, location, and arrangement of elliptical porosity on crack growth is numerically modeled. By placing these porosities beside and in front of the crack, the stress distribution, stress intensity factor variation, and maximum resistance of the sample are investigated.
 
Results and Conclusions
The results showed that for the equal size of pores if the vertical elliptical pore is located in front of the crack, its destructive effect is about 20% more than the horizontal elliptical pore. Also, when the porosity is located beside the crack, by increasing the angle between the horizontal axis with the direction of the large ellipse diameter (here we call it α), the stress intensity factor decreases from 1 to 0.94 and reduces the crack propagation in the porous sample. In addition, we defined the angle between the horizontal axis and the line joining the centers of the two porosities as β and evaluated the effect of the porosity shape and its location on crack growth in more complex models (i.e., models containing two elliptical porosities). By increasing the α and β from 0o to 90o, the maximum strength of the sample decreases by 18.12%, and the von Mises stress value increases from 0.154 to 0.922 MPa. However, the results revealed that the effect of β on crack growth is greater than α.

کلیدواژه‌ها [English]

  • Porous media
  • Crack growth
  • Extended finite element method
  • Shape of porosity
  • Arrangement of porosity

مواد ترد به‌طور طبیعی دارای ناپیوستگی­های متعددی ازجمله ترک، درزه و تخلخل بوده که خصوصیات مکانیکی و مقاومتی آن‌ها را کاهش داده و بر نحوه وقوع شکست در آن‌ها تأثیر بسزایی دارد ]3-1[. به‌عنوان‌مثال رفتار سنگ­ها، به‌طورمعمول تحت تأثیر رفتارهای میکرومکانیکی ناشی این ناپیوستگی­ها قرار می­گیرد. به‌طور خاص در مواد متخلخل، هندسه، شکل و نحوه چیدمان تخلخل‌ها مؤلفه‌های بسیار تعیین‌کننده‌ای در نحوه گسترش ترک و مقاومت نهایی سنگ، به شمار می­آیند [4، 5]. بسیاری از مطالعات آزمایشگاهی نشان داده‌اند که شروع و گسترش ترک، از ناپیوستگی­هایی که از پیش در نمونه وجود داشته‌اند، آغاز می‌شود [6، 7]. ازاین‌رو، مطالعه نحوه توزیع تنش، چگونگی شروع و گسترش ترک و مقاومت بیشینه در مواد متخلخل، بسیار مهم است. بررسی و ارزیابی فرآیند انتشار ترک در سنگ­های متخلخل، می­تواند برای طراحی بهتر پروژه‌های ژئومکانیکی و پایش پایداری سازه­های مهندسی، بسیار کاربردی باشد [8]. ازآنجایی‌که ارزیابی آزمایشگاهی گسترش ترک و تغییر مقاومت در سنگ‌های متخلخل، بسیار دشوار است، روش­های عددی به‌عنوان یک راهکار مناسب برای بررسی چنین مواردی به‌حساب می‌آیند. روش‌های عددی مختلفی برای بررسی رشد ترک و شکست در مواد ترد ارائه‌شده است [9]. در این میان، روش اجزا محدود توسعه‌یافته[i] (XFEM)، به علت ویژگی­های منحصربه‌فرد و توانایی بالا در سال‌های اخیر موردتوجه پژوهشگران متعددی قرارگرفته است [10، 11]. ازجمله چالش­ها و معایب عمده­ی روش اجزا محدود استاندارد، مش­بندی دوباره دامنه موردمطالعه در مدل­سازی رشد ترک و نیز صرف هزینه محاسباتی بالا در موقعیت ناپیوستگی‌ها (محاسبه تکینگی در نوک ترک) است که استفاده از آن را در برخی از مسائل مکانیک شکست، محدود می­سازد. عدم در نظر گرفتن هندسه ناپیوستگی‌ها در مش‌بندی دامنه و نیز عدم نیاز به مش‌بندی دوباره آن به‌واسطه رشد ترک، ازجمله قابلیت‌های عمده روش کارآمد اجزا محدود توسعه‌یافته محسوب می­شود. درروش XFEM، از روش اجزا محدود استاندارد بدون استفاده از المان­های تکینه[ii] و با استفاده از توابع غنی­ساز[iii] که از حل تحلیلی میدان تنش در پیرامون ناپیوستگی و ترک استخراج می‌شوند، استفاده می‌شود. بااین‌حال، اضافه کردن درجات آزادی (غنی­سازی) گره‌هایی از مش که با ناپیوستگی در ارتباط است، شبیه‌سازی تکینگی و ناپیوستگی­ها را در این روش، امکان‌پذیر می­کند. در این روش، موقعیت نوک ترک و بدنه ترک را می‌توان در هر مرحله از رشد ترک یافت و درنتیجه المان‌هایی که باید غنی‌سازی شوند را به‌درستی انتخاب نمود [12].



[i] eXtended Finite Element Method (XFEM)

[ii]Singular elements

3 Enrichment functions

[1]                 X.P. Zhou, Y. Wang, X. Xu, Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics, Int. J. Fracture 201 (2) (2016) 213–234.
[2]                 S.Y. Wang, S.W. Sloan, D.C. Sheng, S.Q. Yang, C.A. Tang, Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression, Int. J. Solids Struct. 51 (5) (2014) 1132–1148.
[3]                 T. Kato, T.Nishioka, Analysis of micro-macro material properties and mechanical effects of damaged material containing periodically distributed elliptical microcracks. Int. J. Fract. 131, 247–266 (2005).
[4]                 J.A. Hudson, E.T. Brown, F. Rummel, Controlled failure of rock diss and rings loaded in diametral compression. Int. J. Rock Mech. Min. Sci. 9, 241–248 (1972)
[5]                 J.A. Hudson, Tensil strength and the Ring test. Int. J. Rock Mech. Min. Sci. 6, 91–97 (1969)
[6]                 Y.P. Li, L.Z. Chen, Y.H. Wang, Experimental research on pre-cracked marble under compression, Int. J. Solids Struct. 42 (9–10) (2005) 2505 2516.
[7]                 S. Yang, Y. Huang, W. Tian, J. Zhu. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Engineering Geology (2016), doi:10.1016/j.enggeo.2016.12.004
[8]                 H. Haeri, A. Khaloo, M. Marji, Fracture analyses of different pre-holed concrete specimens under Compression. The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, 2015.
[9]                 Hoek E, Martin CD. Fracture initiation and propagation in intact rock – A review. J Rock Mech Geotech Eng 2014;6:287–300. doi:10.1016/J.JRMGE.2014.06.001.
[10]              S. Jiang, C. Du, C. Gu, An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM. Structural Engineering and Mechanics, Vol. 49, No. 5 (2014) 597-618.
[11]              M. Rezanezhad, S.A. Lajevardi, S. Karimpouli, Crack growth in porous media using XFEM: Comparison of modeling strategies in the Abaqus, J. Aaly. and Num.Meth. in Min. Eng. Vol. 24 (October) (2020) 27-40 (in Persian).
[12]              S. Mohammadi, Extended Finite Element Method: For Fracture Analysis of Structures, John Wiley & Sons, 2008.
[13]              F. Feng, S. Chen, D. Li, S. Hu, W. Huang, B. Li, Analysis of fractures of a hard rock specimen via unloading of central hole with different sectional shapes, Energy Science & Engineering, 2019. DOI: 10.1002/ese3.432
[14]              Z. Zhou, L. Tan, W. Cao, Fracture evolution and failure behaviour of marble specimens containing rectangular cavities under uniaxial loading, Engineering Fracture Mechanics (2017), doi: http:// dx.doi.org/10.1016/j.engfracmech.2017.08.029.
[15]              S.Yang, W. Tian, Y. Huang, Z. Ma, L. Fan, Z. Wu, Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression. Engineering Fracture Mechanics. 2018.
[16]              Q. Zhu, D. Li, Z. Han, X. Li, Z. Zhou, Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences 115 (2019) 33–47
[17]              Q. Yin, H. Jing, H. Su, Investigation on mechanical behavior and crack coalescence of sandstone specimens containing fissure-hole combined flaws under uniaxial compression. Geosciences Journal. 2017. http://dx.doi.org/10.1007/s12303-017-0081-x
[18]              Y. Huang, S. Yang, P.G. Ranjith, J. Zhao, Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: Experimental study and particle flow modeling, Computers and Geotechnics 88 (2017) 182–198
[19]              Y. Huang, S. Yang, M.R. Hall, W. Tian, P. Yin, Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity, archives of civil and mechanical engineering 18 (2018 ) 1–15
[20]              Z. Han, D. Li, Q. Zhu, M. Liu, Z. Sun, Dynamic Fracture Evolution and Mechanical Behavior of Sandstone Containing Noncoplanar Elliptical Flaws under Impact Loading, Advances in Civil Engineering Volume 2018, Article ID 5649357, 16 pages.
[21]              M. Rezanezhad, S.A. Lajevardi, S. Karimpouli, Effects of pore-crack relative location on crack propagation in porous media using XFEM method, Theor. Appl. Fract. Mech. 103 (April) (2019) 102241.
[22]              M. Rezanezhad, S.A. Lajevardi, S. Karimpouli, Effects of pore(s)-crack locations and arrangements on crack growth modeling in porous media, Theoretical and Applied Fracture Mechanics 107 (2020) 102529.
[23]              H.Li, J.Li, H.Yuan, A review of the extended finite element method on macrocrack and microcrack growth simulations, Theoretical and Applied Fracture Mechanics (2018), doi: https://doi.org/10.1016/ j.tafmec.2018.08.008
[24]              N. Moes, J. Dolbow, T.vBelytschko, A finite element method for crack growth without remeshing, J. Numer. Meth. Eng., (1999), 46(1), 132-150.
[25]              Z.D. Qian, H. Jing, Fracture properties of epoxy asphalt mixture based on extended finite element method, J. Centr. South Univ., (2012), 19(11), 3335.
[26]              A. Benzaama, M. Mokhtari, H. Benzaama, S. Gouasmi, T. Tamine, Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load, Advances in Aircraft and Spacecraft Science, Vol. 5, No. 1 (2018) 129-139 DOI: https://doi.org/10.12989/aas.2018.5.1.129.
[27]              Sih, G.C. Methods of analysis and solutions of crack problems, Director of the Institute of Fracture and Solid Mechanics, Lehigh University, 124-125.
[28]              Chen, M., Wang, H. "Effect of pores on crack propagation behavior for porous Si3N4 ceramics", Ceramics International, 20 November 2015.