تخمین ذخیره کانسارهای مس پورفیری با استفاده از مدل‏ های عدم قطعیت در مرز واحدهای سنگ‏ شناسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده نفت، ژئوفیزیک و معدن، دانشگاه صنعتی شاهرود

2 مرکز پیشرفته علوم معدنکاری(AMTC) ، دانشگاه شیلی، سانتیاگو، شیلی

3 دانشکده نفت ژئوفیزیک و معدن، دانشگاه صنعتی شاهرود

10.29252/anm.8.15.69

چکیده

مدلسازی زمین‌شناسی‌ یکی از مراحل اساسی و مقدم بر تخمین عیار در یک کانسار است که شامل تقسیم بندی قطعی کانسار به زیر بخش‌های کوچک‌تر تحت عنوان واحد‌های زمین‌شناسی‌ است. اگر چه این تقسیم‌بندی باعث ارائه رفتار بهتر از تغییرپذیری عیار در فضا می‌شود، اما امکان ارائه مدل‌های عدم قطعیت که مورد نیاز طبقه‌بندی منابع و ذخائر معدنی بر اساس استانداردهای جهانی نظیر JORC است را در مرز این واحدهای زمین‌شناسی‌ ندارد. این مقاله روشی را ارائه می‌نماید که با استفاده از آن می‌توان عدم قطعیت زمین‌شناسی‌ را در ارزیابی منابع و ذخائر معدنی لحاظ نمود. کارآیی روش در یک مطالعه موردی در یک معدن مس پورفیری در شیلی ارائه گردیده است. در ابتدا شبیه‌سازی زمین آماری برای به دست آوردن توصیف احتمالاتی سه نوع واحد سنگ‌شناسی در این کانسار (گرانودیودیت، تورمالین برشی و دیگر برشی‏ها) استفاده شده است. سپس تحقق‌های شرطی به منظور تعیین عدم قطعیت عیار در کانسار به کار گرفته شده‌اند. مدل ذخیره معدنی در نهایت با استفاده از وزن‌دار کردن شبیه‌سازی عیار مس بوسیله احتمال رخداد واحدهای سنگ‌شناسی مختلف ارائه گردیده است. مدل ارائه شده، امکان تولید یک مدل عیاری را فراهم نموده است که دارای عدم قطعیت واحدهای سنگ‌شناسی با اجتناب از مدل‌های مصنوعی ناشی از فرضیه‌‌های مرزی قطعی بین مناطق پرعیار و کم عیار در نزدیکی مرزهای سنگ‌شناسی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reserve Estimation at Porphyry Copper Deposits Using Uncertainty Models in Geologic Unit Boundaries

نویسندگان [English]

  • Hamid Kor 1
  • Nasser Madani 2
  • Allahyar Khojamli 3
1 Dept. of Mining, Petroleum and Geophysics, Shahrood University of Technology, Iran
2 Advanced Mining Technology Center (AMTC), university of Chile, Santiago, Chile
3 Dept. of Mining, Petroleum and Geophysics, Shahrood University of Technology, Iran
چکیده [English]

Summary
Simulation methods give the most probable models that could be used to obtain the best and worst case of a resource. Therefore, average of these models is similar to the estimation model but does not contain the estimation models problems. In the introduced new method after determining the rock type probability models the grade distribution is evaluated using geostatistical simulations. This method in addition to containing the probability models uses simulated grades that may be most authentic. Performance of the presented method is evaluated using a case study of a porphyry copper mine in Chile.
 
Introduction
Geological modeling is one of essential processes in ore reserves and resources evaluation that is prior to the grade estimation. It containins the deterministic division of deposit into smaller subdomains that are called geological units. Although this categorization leads to better behavior than spatial grade variability, but it is not possible to present the uncertainty models in the boundaries of geological units that are needed to classify the ore reserves and resources according to international standards such as JORC. This article presents an approach that uses geological uncertainty that could be incorporated in the evaluation of mineral resources. Introduced method is applied on the rihoblanco deposit case study in chile.
 
 Methodology and Approaches
At first to obtain probabilistic descriptions of three different lithological units the geostatistical simulation have been used in this deposit (granodiorit, tourmaline breccia and another breccias). Then to determine the grade uncertainty of the deposit, the conditional simulations have been applied. Finally, mineral resource model is presented using weighting the copper grade realizations by occurrence probability of different geological units. Presented model makes the production of a grade model possible. The grade model contains the geologic models uncertainty with avoidance of artificial models that caused by deterministic boundary hypotheses between high grade and low grade areas of ore in near the geologic boundaries.
 
Results and Conclusions
Introduced method presented better results compared to the kriging method. Results showed that evaluation of the deposit geological uncertainty prevented production of unrealistic models created in models like kriging method. Reliability of the presented model was evaluated using less standard deviation of weighted realizations conditional variance. It showed the suitable reliability of the model. Furthermore, coefficient of variation in boundary domains was low which showed the method is suitable and uncertainty in boundaries is low. In addition to that, the presented new method compared with general simulation of grade distribution showed that the new method predicts higher tonnage percentage in grade-tonnage curves.

کلیدواژه‌ها [English]

  • Geostatistical simulation
  • Geological uncertainty models
  • Geological probability
  • Geological uncertainty
  • Grade uncertainty
  • Sequential indicator simulation
  • Sequential gaussian simulation
[1]           Dowd, P.A., (1986). Geometrical and geological controls in geostatistical estimation and ore body modelling. In: R.V. Ramani (Editor), Proceedings of the 19th APCOM Symposium. Society of Mining Engineers, Littleton, Colorado, pp. 81-99.
[2]           Duke, J.H., and Hanna, P.J., (2001). Geological interpretation for resource modeling and estimation. In: A.C. Edwards (Editor), Mineral Resource and Ore Reserve Estimation – The AusIMM Guide to Good Practice. The Australasian Institute of Mining and Metallurgy, Melbourne, Australia, pp. 147-156.
[3]           Sarkar, B.C., O’ Leary, J., and Mill, A.J.B., (1990). Computer based geological -geostatistical evaluation system. In: Proceedings of the 22nd International Symposium on Application of Computers and Operations Research in the MineralIndustry. Tech. Univ. Berlin, Berlin, Germany, v. 2, pp. 601-612.
[4]           Stegman, C.L., (2001). How domain envelopes impact on the resource estimate – Case studies from the Cobar gold field, NSW, Australia. In: A.C. Edwards (Editor), Mineral Resource and Ore Reserve Estimation – The AusIMM Guide to Good Practice. The Australasian Institute of Mining and Metallurgy, Melbourne, Australia, pp. 221-236.
[5]           Journel, A., and Huijbregts, C. (1978). Mining Geostatisfics. New York: Academic Press, pp. 597.
[6]           Emery, X., González, K., (2006). “Probabilistic modeling of geological units in a Chilean porphyry copper deposit”, in: 2nd International Conference on Mining Innovation MININ 2006. J.M. Ortiz, R. Guzmán, E. Rubio, F. Henríquez and P. Lillo (eds.), Impresos Socias Ltda, Santiago, Chile, p. 465-476.
[7]           Deutsch, C.V. (2006): A sequential indicator simulation program for categorical variables with point and block data: BlockSIS, Computers & Geosciences 32: 1669–1681
[8]           Dimitrakopoulos, R. (1998). Conditional simulation algorithms for modelling orebody uncertainty in open pit optimisation. International Journal of Surface Mining, Reclamation and Environment, p. 173-179.
[9]           Emery, X. (2005): Properties and limitations of sequential indicator simulation. Stochastic Environmental Research and Risk Assessment 6: 414-424
[10]         Dowd, P. (1994). Optimal Open Pit Design: sensitivity to stimated block values. Geological Society, London, Special Publications, v. 79, p. 87-94.
[11]         Journel, A.G., (1989) Fundamentals of geostatistics in five lessons. American Geophysical Union Publication, Washington, DC, pp. 40.
[12]         Vistelius, A.B. (1989): Principles of Mathematical Geology. Kluwer Academic Publishers, Dordrecht, p. 500
[13]         Caceres, A., Emery, X., Aedo, L., Gálvez, O. (2011): Stochastic geological modeling using implicit boundary simulation, Geomin 2011, Santiago, Chile, 7 p.
[14]         Skewes, M. A., Holmgren, C., Stern, C. R., (2002).The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids. Springer-Verlag, Mineral Deposita. 20 pp. 2-21.
[15]         Deutsch, C., and Journel, A. (1998). GSLIB: Geostatistical Software Library and User’s Guide. New York: Oxford University Press, pp. 384.
[16]         Duggan, S. y., Dimitrakopoulos, R. (2005). Application of conditional simulation to quantify uncertainty and to classify a diamond deflation deposit. Geostatistics Banff v.14pp. 419-428