[1] Masoumi, H., Douglas, K. J., & Russell, A. R. (2016). A bounding surface plasticity model for intact rock exhibiting size-dependent behavior. Rock Mech. Rock Eng., 49, 47-62.
[2] Yoshinaka, R., Osada, M., Park, H., Sasaki, T., & Sasaki, K. (2008). Practical determination of mechanical design parameters of intact rock considering scale effect. Eng. Geol., 96(3–4), 173–186.
[3] Poulsen, B. A., & Adhikary, D. P. (2013). A numerical study of the scale effect in coal strength. Int. J. Rock Mech. Min. Sci., 63, 62-71.
[4] Masoumi, H., Saydam, S., & Hagan, P. C. (2015). Unified Size-Effect Law for Intact Rock. Int. J. Geomech., 16(2), 1-15.
[5] Weibull, W. (1951). A statistical distribution of function of wide applicability. J. Appl. Mech., 18, 293–297.
[6] Hoek, E., & Brown, E. T. (1980). Underground excavations in rock. Inst. Min. Metall., London, 527.
[7] Bazant, Z. P., & ASCE, F. (1984). Size effect in blunt fracture: Concrete, rock, metal. J. Eng. Mech., 110(4), 518–535.
[8] Carpinteri, A., Chiaia, B., & Ferro, G. (1995). Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder. Mater. Struct., 28(6), 311-317.
[9] Bazant, Z. P. (1997). Scaling of quasibrittle fracture: Hypotheses of invasive and lacunar fractality, their critique and Weibull connection. Int. J. Frac., 83(1), 41-65.
[10] Mogi, K. (1962). The influence of dimensions of specimens on the fracture strength of rocks. Bull. Earth Res. Inst., 40,175-185.
[11] Baecher, G. B., & Einstein, H. H. (1981). Size effect in rock testing. Geophys. Res. Lett., 8(7), 671-674.
[12] Thuro, K., Plinninger, R. J., Zah, S., & Schutz, S. (2001). Scale effects in rock strength properties. Part1: Unconfined compressive test and Brazilian test. Rock mechanics-a challenge for society, ISRM, Espoo, 169-174.
[13] Pells, P. J. N. (2004). On the absence of size effects for substance strength of Hawkesbury Sandstone. Aust. Geomech., 39, 79-83.
[14] Darlington, W. J., & Ranjith, P. G. (2011). The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials. Rock Mech. Rock Eng., 44(5), 513–529.
[15] Bieniawski, Z. T. (1975). The point load test in geotechnical practice. Eng. Geol., 9, 1-11.
[16] Greminger, M. (1982). Experimental studies of the influence of rock anisotropy and size and shape effects in point-load testing. Int. J. Rock Mech. Min. Sci., 19, 241-246.
[17] Hawkins, A. B. (1998). Aspects of rock strength. Bull. Eng. Geol. Environ., 57, 17-30.
[18] Thuro, K., Plinninger, R. J., Zah, S., & Schutz, S. (2001b). Scale effect in rock strength properties. Part 2: Point load test and point load strength index. In Rock Mechanics- a challenge for Society, Zeitlinger, Switzerland, 175-180.
[19] Forbes, M., Masoumi, H., Saydam, S., & Hagan, P. (2015). Investigation into the effect of length to diameter ratio on the point load strength index of Gosford sandstone. In 49th U.S. Rock Mechanics/Geomechanics Symp., American Rock Mechanics Association, San Francisco.
[20] Andreev, G. E. (1991a). A review of the Brazilian test for rock tensile strength determination. Part I: Calculation formula. Min. Sci. Tech., 13(3), 445-456.
[21] Andreev, G. E. (1991b). A review of the Brazilian test for rock tensile strength determination. Part II: Contact conditions. Min. Sci. Tech., 13(3), 457-465.
[22] Butenuth, C. (1997). Comparison of tensile strength values of rocks determined by point load and direct tension tests. Rock Mech. Rock Eng., 30(1), 65-72.
[23] Elices, M., & Rocco, C. (1999). Size effect and boundary conditions in Brazilian test: Theoretical analysis. Mater. Struct., 32(6), 437-444.
[24] Çanakci, H., & Pala, M. (2007). Tensile strength of basalt from a neural network. Eng. Geol., 94(1-2), 10-18.
[25] Singh, M. M., & Huck, P. J. (1972). Large scale triaxial tests on rock. In the 14th US Symp. on Rock Mech., Pennsylvania State Univ., 35-60.
[26] Hunt, D. D. (1973). The Influence of Confining Pressure on Size Effect. Master of Science, Massachusetts Institute of Technology, Cambridge.
[27] Medhurst, T. P., & Brown, E. T. (1998). A study of the mechanical behaviour of coal for pillar design. Int. J. Rock Mech. Min. Sci., 35(8), 1087-1105.
[28] Aubertin, M., Li, L., & Simon, R. (2000). A multiaxial stress criterion for short and long term strength of isotropic rock media. Int. J. Rock Mech. Min. Sci., 37(8), 1169-1193.
[29] Masoumi, H., Roshan, H., & Hagan, P. C. (2016). Size-dependent Hoek-Brown failure criterion. Int. J. Geomech., 17(2), 1-12.
[30] Weibull, W. (1939). A statistical theory of the strength of materials. Ingeniors Vetenskaps Akademiens Handlingar, 151, 1-29.
[31] Bieniawski, Z. T. (1968). The effect of specimen size on compressive strength of coal. Int. J. Rock Mech. Min. Sci., 5, 325-335.
[32] Pretorius, J. P. G., & Se, M. (1972). Weakness correlation and the size effect in rock strength tests. JS Afr. Inst. Min. Met., 12, 322-327.
[33] Bazant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Mater. Struct., 16, 155-177.
[34] Bazant, Z. P., & Chen, E. P. (1997). Scaling of structural failure. Appl. Mech. Rev., 50(10), 593-627.
[35] Bazant, Z. P., & Planas, J. (1998). Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press.
[36] Griffith, A. A. (1924). The theory of rupture. In 1st Int. Congress of Applied Mech., Delft, Netherlands, 55-63.
[37] Adey, R. A., & Pusch, R. (1999). Scale dependency in rock strength. Eng. Geol., 53, 251-258.
[38] Bazant, Z. P., Lin, F. B., & Lippmann, H. (1993). Fracture energy release and size effect in borehole breakout. Int. J. Numer. Anal. Methods Geomech., 17, 1-14.
[39] Carpinteri, A. (1994). Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech. Mater., 18, 89-101.
[40] Carpinteri, A., & Mainardi, F. (1997). Fractals and Fractional Calculus in Continuum Mechanics. Springer.
[41] Yuki, N., Aoto, S., Yoshinaka, R., Yoshihiro, O., & Terada, M. (1995). The scale and creep effect on the strength of welded tuff. In Int. Workshop on Rock Foundation, Balkema, Tokyo.
[42] Hoek, E. (2000). Rock Engineering Course Notes by Evert Hoek.
[43] Bazant, Z. P., & et al. (2004). RILEM TC QFS, Quasibrittle fracture scaling and size effect-Final report. Mater. Struct., 37, 547-568.
[44] Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., & Hicher, P. Y. (2014). The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech., 225, 2199-2216.
[45] Zhang, Q., Zhu, H., Zhang, L., & Ding, X. (2011). Study of scale effect on intact rock strength using particle flow modeling. Int. J. Rock Mech. Min. Sci., 48, 1320-1328.
[46] Bazant, Z. P., & Xi, Y. (1991). Statistical size effect in quasi-brittle structures: II. Nonlocal theory. ASCE J. Eng. Mech., 117(11), 2623-2640.
[47] Carpinteri, A., Ferro, G., & Monetto, I. (1999). Scale effects in uniaxially compressed concrete Specimens. Mag. Concr. Res., 51(3), 217-225.
[48] Natau, O., Frolich, B. O., & Mutschler, T. O. (1983). Recent development of the large scale triaxial test. In ISRM Congress, Melbourne, A65-A74.
[49] Hoskins, J. R., & Horino, F. G. (1969). Influence of Spherical Head Size and Specimen Diameters on the Uniaxial Compressive Strength of Rocks. US Department of the Interior, Bureau of Mines, Washington.
[50] Vutukuri, V. S., Lama, R. D., & Saluja, S. S. (1978). Handbook on Mechanical Properties of Rocks, Trans. Tech. Publications.
[51] Blanks, R. F., & Mcnamara, C. C. (1935). Mass concrete tests in large cylinders. J. Am. Concrete Inst., 31, 280-303.
[52] ISRM. (2007). The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Ulusay, R., & Hudson, J. A. (eds.), Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey.
[53] Rezaee, H. (2015). Experimental Evaluation of the Effect of Specimen and Grain Size on the Mechanical Properties and Fracture Behavior of Rock, MSc Thesis, Isfahan University of Technology.
[54] ACI (American Concrete Institute). (1988). Measurement of Properties of Fiber Reinforced Concrete. 85(6), 583-593.
[55] ASTM. (2003). Standard Specification for Concrete Aggregates- C33-03. Annual Book of ASTM Standards, 4(2).