شبیه‌سازی عددی فرآیند گازی کردن زیرزمینی زغالسنگ (UCG) با هدف تعیین پارامترهای عملیاتی در مقیاس تجاری، مطالعه موردی؛ لایه K10 منطقه تخت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

2 دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

10.29252/anm.2019.10109.1344

چکیده

فرآیند تبدیل به گاز کردن زیرزمینی زغالسنگ یک فرآیند سازگار با محیط‌زیست است که در آن لایه‌های زغالسنگ به صورت برجا به گاز تبدیل شده و سپس استخراج می‌شوند. هدف اصلی از اجرای فرآیند UCG، تولید گاز سنتزی دارای ارزش حرارتی و یا تولید هر یک از گازهای حاصل از فرآیند UCG (مثلا تولید هیدروژن) است. پیش‌بینی مقدار و ارزش حرارتی گاز تولیدی پیش از اجرای فرآیند UCG، برای انجام تحلیل‌های اقتصادی ضروری است. از این رو در این پژوهش یک مدل با استفاده از نرم‌افزار کامسول توسعه داده شده که قادر است تاثیر پارامترهای عملیاتی را بر مقدار، ترکیب و ارزش حرارتی گاز تولیدی پیش‌بینی نماید. در این پژوهش یک الگوی جدید برای گازی کردن کل زغالسنگ موجود در پهنه‌های استخراجی معرفی شده است. طبق این الگو که مراحل آن توسط یک الگوریتم نشان داده شده است، علاوه بر این که کل زغالسنگ موجود در هر پهنه تبدیل به گاز می‌شود؛ ارزش حرارتی گاز تولیدی در حد مورد نیاز به دست می‌آید. الگوی ارائه شده در این پژوهش با یک مطالعه موردی برای لایه K10 منطقه تخت، معرفی شده است. در نهایت پارامترهای عملیاتی برای تولید گاز سنتزی با مقدار و ارزش حرارتی مناسب برای گازی کردن لایه K10 منطقه تخت به دست آمده است. نتایج نشان می‌دهد که در یک دوره 11 ماهه باید 9 کارگاه همزمان با هم فعال باشند و پارامترهای عملیاتی در هر کارگاه شامل دما، فشار کاواک، نرخ تزریق اکسیژن، نرخ تزریق بخارآب و زمان عملیات به ترتیب باید 1273 کلوین، 1 مگاپاسکال، 10 مول بر ثانیه، 20 مول بر ثانیه و 11 ماه باشد. در این صورت لایه‌ی‌ K10 می‌تواند خوراک یک نیروگاه برق 27 مگاواتی سیکل ترکیبی گازی (IGCC) را به مدت 22 سال تامین کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of Underground Coal Gasification Process in order to Determine the Operational Parameters in the Commercial Field; Case Study: K10 Coal Seam of Takht Region

نویسندگان [English]

  • Amin Jowkar 1
  • Mehdi Najafi 2
  • Farhang Sereshki 1
1 Dept. of Mining, Petroleum and Geophysics, Shahrood University of Technology,Iran
2 Dept. of Mining and Metallurgy, Yazd University, Iran
چکیده [English]

Summary
In this paper developed a model by COMSOL software that able to predict operational parameters effect on the components and heating value of produced gas during underground coal gasification. In this model for shown the effects of Operational Parameters on UCG process a Case Study has been developed. The results show that this model able to predict the effects of operational parameters on the components and heating value of produced gas in UCG process.
 
Introduction
Underground Coal Gasification (UCG) process have a good adaptation with environment, in this process at the first insitu-coal seam converted to syngas and then would be explorated. The main purpose in UCG process is producing syngas with a heating value or producing each gases that producing in UCG process (for example Hydrogen production). Before implement of UCG process, predict of the components and heating value of syngas is necessary to economic analysis. In this paper presented a new model to gasify all coal in each stope, however; the produced gas have a high heating value.
 
Methodology and Approaches
According to this model, moreover to gasify all of coal in each stope, the extent of heating value of produced gas is the same requested amount. Presented model in this research have been introduced with a Case Study for K10 coal seam of Takht region. Finally Operational Parameters to produce syngas with appropriate components and heating value for gasify K10 coal seam is calculated (it should be noted that this design shows only one possible scenarios).
 
Results and Conclusions
The results for this case study shown that in a period of 11 months, 9 stopes must be active simultaneously and Operational Parameters in each stope including temperature, cavity pressure, oxygen injection rate, steam injection rate and operation time should be consider 1273K, 1MPa, 10 mol/s, 20 mol/s and 11 months respectively. In this case, K10 coal seam can support feed of 27 MW IGCC-based power plant for 22 years.

کلیدواژه‌ها [English]

  • UCG
  • Operational Parameters
  • Numerical simulation
  • Heating Value of Syngas
  • K10 Coal Seam of Takht Region

در فرآیند تبدیل به گاز کردن زیرزمینی زغالسنگ (UCG: Underground Coal Gasification) ، لایه‌های زغالسنگ با یک فرآیند پیشرفته ترموشیمیایی به صورت برجا در زیر زمین به گاز سنتزی تبدیل می‌شود]1[. مهم‌ترین و اصلی‌ترین گازهایی که در فرآیند UCG تولید می‌شوند، گازهای CO، CO2، H2 و CH4 هستند که ترکیب آنها گاز سنتزی نامیده می‌شود. در اجرای عملیات UCG با توجه به نیاز صنایع مختلف، هدف می‌تواند تولید هر یک از این گازها (مثلا تولید هیدروژن) و یا تولید گاز سنتزی دارای ارزش حرارتی باشد. گاز حاصل از فرآیند UCG برای تولید برق، گاز شهری، صنایع شیمیایی مانند تولید متانول، تولید سوخت مایع و هیدروژن طبیعی قابل استفاده است]2 ،3[. روش‌های مختلفی در سراسر دنیا برای اجرای فرآیند UCG ابداع و بعضا اجرا شده است. در حال حاضر روش منبع احتراق قابل کنترل1 (CRIP) برای اجرای UCG در مقیاس تجاری بیش از سایر روش‌ها مورد توجه است.در شکل 1 یکی از پیشرفته‌ترین مجموعه‌های UCG به روش CRIP موازی (دو کاناله) در بلادوودکریک2 استرالیا نشان داده شده‌است. در این کارگاه نخست دو چاه قائم (چاه‌های تزریق و تولید) با فاصله 30 متر از یکدیگر حفر شده است. این دو چاه در کف لایه زغالسنگ با استفاده از حفاری جهت‌دار به طول 600 متر پیشروی کرده و انتهای آنها با استفاده از یک چاه قائم (چاه آتش‌زنه) به ‌هم وصل شده-است]4[.

[1]           Robert, F., & Joseph, W. (1996). In situ gasification and combustion of coal. H.Hartman, SME Handbook. Inc. Littleton Colorado. Society for Mining, Metallurgy and Exploration.
[2]           Najafi, M. (2014). Thermo-mechanical modeling of panel dimentions in underground coal gasification. PhD thesis. Shahrood University of technology (in persian).
[3]           www.lincenergy.com
[4]           Couch, G. R. (2009). Underground Coal Gasification. IEA Clean Coal Centre, http://www.iea-coal.org.uk.
[5]           Perkins, G. M. P. (2005). Mathematical modelling of underground coal gasification (p. 257). University of New South Wales.
[6]           Nourozieh, H., Kariznovi, M., Chen, Z., & Abedi, J. (2010). Simulation study of underground coal gasification in Alberta reservoirs: geological structure and process modeling. Energy & Fuels, 24(6), 3540-3550.
[7]           Sarraf Shirazi, A. (2012). CFD Simulation of underground coal gasification. In Masters Abstracts International (Vol. 51, No. 03).‏
[8]           Daggupati, S., Mandapati, R. N., Mahajani, S. M., Ganesh, A., Mathur, D. K., Sharma, R. K., & Aghalayam, P. (2010). Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy, 35(6), 2374-2386.
[9]           Moosavi, M. (2012). Stability analysis untherground coal gasification cavity in Takht coal region of estrn Alborz. Thesis submitted for the degree of M.Sc. Yazd University (in persian).
[10]         Lotfi Azad, A. (2012). Gas seepage modeling and analysis of Underground Coal Gasification (UCG) reactors; Case Study: Tabas coal mine. Thesis submitted for the degree of M.Sc. Shahrood University of technology (in persian).
[11]         Jalali, S. M. E., Najafi, M., & KhaloKakaie, R. (2013). Pre-feasibility usage of underground coal gasification (UCG) for power generation; Case study: Takht coal region. Journal of Mining Engineering, No. 19 (in persian).
[12]         Najafi, M., Jalali, S. M. E., KhaloKakaie, R., & Forouhandeh, F. (2015). Prediction of cavity growth rate during underground coal gasification using multiple regression analysis. International Journal of Coal Science &Technology, 2(4), 318-324.
 
 
[13]         Perkins, G., & Sahajwalla, V. (2008). Steady-state model for estimating gas production from underground coal gasification. Energy & Fuels, 22(6), 3902-3914.
[14]         Daggupati, S., Mandapati, R. N., Mahajani, S. M., Ganesh, A., Sapru, R. K., Sharma, R. K., & Aghalayam, P. (2011). Laboratory studies on cavity growth and product gas composition in the context of underground coal gasification. Energy, 36(3), 1776-1784.‏
[15]         Andrianopoulos, E., Korre, A., & Durucan, S. (2015). Chemical process modelling of underground coal gasification and evaluation of produced gas quality for end use. Energy Procedia, 76, 444-453.
[16]         Żogała, A., & Janoszek, T. (2015). CFD simulations of influence of steam in gasification agent on parameters of UCG process. Journal of Sustainable Mining, 14(1), 2-11.‏
[17]         Laciak, M., Kostúr, K., Durdán, M., Kačur, J., & Flegner, P. (2016). The analysis of the underground coal gasification in experimental equipment. Energy, 114, 332-343.
[18]         Wiatowski, M., Kapusta, K., Ludwik-Pardała, M., & Stańczyk, K. (2016). Ex-situ experimental simulation of hard coal underground gasification at elevated pressure. Fuel, 184, 401-408.‏
[19]         Shayan-Mehr, M., Ghaemi, A., & Nazari, M. (2014). Chemical reaction engineering using Comsol Multiphysics software. Andishehsara Publishing (in persian).
[20]         Roohollah, A., Jalili, S., Samii, D. M., & Arshadi, N. (2016). Chemistry 3 and Lab. Printing and Publishing Company of Iran Textbooks, Fourteenth Edition (in persian).
[21]         Exploration report of East Alborz Co. (2009). Report of the end of exploration of Thakht coal region. Iran Mineral Processing and Production Company, East Alborz Coal Company, Shahroud (in persian).
[22]         www.earth.google.com
[23]         Hossieni, M. (2007). Determination of the Ability of Mechanization of Coal Layers Using Fuzzy Logic, Case Study: Takht Coal Mine. Thesis submitted for the degree of M.Sc. Shahrood University of technology (in persian).
[24]         Yazdi, M. (2009). Coal (From origin to invironmental impacts). Publication of JIHAD AMIRKABIR University (in persian).
[25]         www.bitumen.loxblog.com/post/191
[26]         Haynes, W. M. (Ed.). (2014). CRC handbook of chemistry and physics. CRC press.‏
[27]         Daggupati, S., Mandapati, R. N., Mahajani, S. M., Ganesh, A., Pal, A. K., Sharma, R. K., & Aghalayam, P. (2011). Compartment modeling for flow characterization of underground coal gasification cavity. Industrial & Engineering Chemistry Research, 50(1), 277-290.
[28]         Prabu, V., & Jayanti, S. (2011). Simulation of cavity formation in underground coal gasification using bore hole combustion experiments. Energy, 36(10), 5854-5864.